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We calculate the optical conductivity, σ(ω), in the normal state fullerene superconductors by self-
consistently including the impurity scatterings, the electron-phonon and electron-electron Coulomb
interactions. The finite bandwidth of the fullerenes is explicitely considered, and the vertex corection
is included a la Nambu in calculating the renormalized Green’s function. σ(ω) is obtained by
calculating the current-current correlation function with the renormalized Green’s function in the
Matsubara frequency and then performing analytic continuation to the real frequency at finite
temperature. The Drude weight in σ(ω) is strongly suppressed due to the interactions and transfered
to the mid-infrared region around and above 0.06 eV which is somewhat less pronounced and much
broader compared with the expermental observation by DeGiorgi et al.

I. INTRODUCTION

The optical spectra of fullerene superconductors in the
normal state were found to exhibit some unusual features
[1,2]. The optical conductivity, σ(ω), deviates consider-
ably from the simple Drude behavior expected for con-
ventional metals: the spectral weight of the Drude peak
is reduced by about an order of magnitude and trans-
fered to a mid-infrared (MIR) region around 0.06 eV.
This suggests that the strong interaction effects due to
the Coulomb and electron-phonon interactions should be
important in the optical spectra of the fullerenes. Under-
standing this unusual behavior in the optical conductivty,
therefore, could reveal important information about the
fullerenes and contribute to understanding other physical
properties of the material.

The optical conductivity σ(ω) represents the rate at
which electrons absorb the incident photons at energy
ω, and is a useful probe in determining electronic char-
acteristics of the material under study. For an ideal
free electron gas, where the interactions between the
electrons, and between the electrons and phonons are
neglected, and the impurity scattering rate 1/τ → 0,
σ(ω) collapses to a delta-function, σ(ω) = Dtotδ(ω),
where the coefficient Dtot represents the total spectral
weight. In this case, the optical conductivity sum rule,
∫

∞

0 dωσ(ω) = Dtot = πe2n/m, where n is the density
and m is the mass of the electrons, is exhausted entirely
by the delta function Drude contribution alone. When
the material becomes dirtier, the Drude peak of the opti-
cal conductivity acquires the Lorentzian shape with the
width of 1/τ . The conductivity sum rule is still ex-
hausted by the Drude part alone when only the impurity
scatterings are present in the system. The total weight
Dtot, however, can change as the inpurity scatterings or
other interactions are introduced when we consider a fi-
nite bandwidth, because the projection to a restricted
basis set disregards all excitations to higher energy than
the bandwidth. When other interactions are present, the
free-carrier Drude weight is reduced by the quasiparti-

cle renormalization factor Z such that D = Z−1Dtot,
and the missing spectral weight from the Drude part is
transfered to a higher energy region of σ(ω) reflecting the
excitation of incoherent scatterings.

The experimentally measured σ(ω) in the normal state
A3C60 shows a remarkable reduction of Drude weight
and, concomitantly, a pronounced MIR absorption below
the inter-band absorption peak: DeGiorgi et al. found a
pronounced MIR peak around 0.06 eV and analysized
that the Drude weight is reduced to about 0.1 − 0.2 of
the total intra-band spectral weight [1], while Iwasa et al.
observed the MIR absorption peak around 0.4 eV and de-
termined that the Drude weight is reduced to about 0.6 of
the total intra-band spectral weight [2]. Although their
results show somewhat different Drude weight and MIR
absorption energy each other, the pronounced suppres-
sion of the Drude weight and the accompanying MIR ab-
sorption imply strong electron-phonon and/or electron-
electron interactions in this material.

In order to understand this unusual feature in σ(ω)
of doped fullerenes, Gunnarsson et al. studied the ef-
fects of the electron-phonon interaction on σ(ω) assum-
ing that the Migdal theorem is valid [3]. They showed
that the electron-phonon interaction leads to a narrow-
ing of the Drude peak by the factor Z = 1 + λ, where λ
is the dimensionless electron-phonon coupling constant,
and a transfer of the depleted Drude weight to a MIR re-
gion at somewhat larger energies than the phonon energy.
Their results, however, are far from sufficient to describe
experimental observations. Therefore, they hinted that
the Coulomb interaction between conduction electrons,
which is neglected in their study, could lead to futher re-
duction of the Drude weight and more pronounced MIR
absorption. On the other hand, one of the present au-
thors recently found, by studying the NMR coherence
peak supression in the fullerene superconductors, that
the Coulomb interaction between conduction electrons,
characterized by UNF ≈ 0.3 − 0.4, where U is the effec-
tive Coulomb interaction and NF is the density of states
(DOS) at the Fermi level, should be included in addition
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to the electron-phonon interaction to understand the var-
ious experimental observations in fullerenes in a coherent
way [4]. We, therefore, included the electron-electron as
well as electron-phonon interactions at the presence of
the impurity scatterings in the present paper, to better
understand the experimentally obsered unusual features
in the optical spectra of the fullerene superconductors in
the normal state.

For fullerene superconductors, the Fermi energy εF =
B/2 ≈ 0.2 − 0.3 eV and the average phonon frequency
ωph ≈ 0.05− 0.15 eV, where B is the bandwidth. There-
fore, ωph/εF ∼ 1 for fullerenes unlike conventional met-
als, where ωph/εF ≪ 1. When ωph/εF ∼ 1, the phonon
vertex correction becomes important because the Migdal
theorem does not hold [5–7], and the frequency de-
pendence of the effective Coulomb interaction, Veff (ω),
should be considered because the frequency scale at
which Veff (ω) varies is comparable with that of electron-
phonon interaction [8]. In this present work, concerned
with the effects of the Coulomb and electron-phonon
interactions on the optical spectra in the narrow band
fullerene superconductors, the vertex correction is incor-
porated in calculating the electron self-energy [4,9,10].
The Coulomb interaction, modelled in terms of the onsite
Hubbard repulsion, is included on an equal footing with
the electron-phonon interaction, and considered fully self-
consistently in calculating the effective electron-electron
interaction [4,10]. The effective electron-electron inter-
action becomes frequency dependent through the screen-
ing. The impurity effects are included with the t-matrix
approximation.

Through the relation

Σ(ip) = G−1(ip) − G−1
0 (ip), (1)

one obtain the electron self-energy Σ(ip) in the Mas-
tubara frequency, which gives Σ(ω) in the real frequency
after the analytic continuation. G0 and G are, respec-
tively, the bare and renormalized electron Green’s func-
tions. Σ(ω) or Z(ω), where the renormalization function
Z(ω) is given by Σ(ω) = ω − ωZ(ω), defines the single-
particle Green’s function of an interacting system as

G−1 = ω − ξk − Σ(ω) = ωZ(ω) − ξk, (2)

where ξk is the electron energy measured from the chemi-
cal potential, ξk = εk−µ. Then, the optical conductivity
can be obtained by calculating the current-current cor-
relation function, Π(iω), using the renormalized Green’s
function obtained from solving Eq. (1) self-consistently.
The calculated optical conductivity shows a strong re-
duction of Drude weight and a broad MIR absorption,
although the MIR feature around 0.06 eV is less pro-
nounced and broader compared with experimental ob-
servations.

This paper is organized as follows: In the follow-
ing section, we present the Eliashberg-type formalism
in the Matsubara frequency to calculate the renormal-
ized Green’s function with the impurity, electron-phonon,

and Coulomb interactions included self-consistently. We
then describe the analytic continuation procedure to ob-
tain the renormalization function Z(ω) in the real fre-
quency. The optical conductivity calculated with the
renormalized Green’s function is presented in Sec. III.
We will discuss how the Drude part and the MIR ab-
sorption of σ(ω) are affected as the impurity scattering
rate, the electron-phonon and electron-electron interac-
tions are varied. These result will then be compare with
the experimental observations. Finally, Sec. IV is for the
summary and some concluding remarks.

II. FORMALISM

The optical conductivity is calculated from the
current-current correlation function, Π(ω), as σ(ω) =
i
ω

limq→0 Π(q, ω) [11]. We use the approximation where
the electron self energy is momentum independent. In
this case, it can be shown that the vertex correction
in the current-current correlation function vanishes for
q → 0 [12]. This leads to

Π(iωm) =
2e2

3m2V

∑

~p

~p2 1

β

∑

ipn

G(~p, ipn + iωm)G(~p, ipn),

(3)

where ipn = πT (2n + 1) and iωm = 2πTm are, re-
spectively, fermion and boson Mastubara frequencies,
where T is the temperature, m and n are the integers.
β = 1/kBT , and V is the volume. The evaluation of Eq.
(3) using Eq. (2) produces

Π(iω) =
2πe2n

m

1

β

∑

ip

θ(ip + iω) − θ(ip)

(p + ω)Z(ip + iω) − pZ(ip)
(4)

in the Mastubara frequency. After performing the ana-
lytic continuation of iω → ω + iδ, to the real frequency,
the optical conductivity is given by

σ(ω) =
1

ω

e2n

m

∫

∞

−∞

dε[fF (ε) − fF (ε + ω)]

× Re
[

i
θ(ε+iδ)− θ(ε+ω +iδ)

εZ(ε+iδ)− (ε+ω)Z(ε+ω+iδ)

− i
θ(ε−iδ)− θ(ε+ω+iδ)

εZ(ε−iδ)− (ε+ω)Z(ε+ω+iδ)

]

,

where fF (ε) = 1/(1+eβε) is the Fermi distribution func-
tion, and θ(ω + iδ) = tan−1

[

iεF

ωZ(ω+iδ)

]

. The finite con-

duction bandwidth B with a constant DOS is explicitly
considered through the factor of θ, which is π/2 for the
usual case of infinite bandwidth metal. In order to calcu-
late the optical conductivity from Eq. (5) we need Z(ω)
which defines single-particle interacting Green’s function
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G(ω). This can be obtained by solving Eq. (1) self-
consistently. The electron self-energy is obtained by cal-
culating the exchange diagram of the renormalized elec-
tron Green’s function and the effective electron-phonon
and Coulomb interactions with the vertex correction in-
cluded via the method of Nambu. The Coulomb interac-
tion, modelled in terms of the onsite Hubbard repulsion
for simplicity, is included on an equal footing with the
electron-phonon interaction. The impurity effects are in-
cluded with the t-matrix approximation. The Eliashberg-
type equation can be written in the Mastubara frequency
as

Znpn = pn +
1

β

∑

m

[λph(n − m) − λch(n − m)

+ λsp(n − m)]2θmΓ +
1

πτ
θn, (6)

where θn = tan−1( B
2pnZn

), and λph(n − m) =
∫

∞

0 dΩ α2F (Ω)2Ω
[Ω2+(pn−pm)2] is the electron-phonon interaction

kernel. λch(n − m) and λsp(n − m) are, respectively,
the interactions in the charge and spin channels due
to the Hubbard repulsion. They are determined self-
consistently as

λch(k) = UNF

{

1

2
− χn + χ2

n ln[1 + 1/χn]

}

, (7)

λsp(k) = UNF

{

1

2
+ χn + χ2

n ln[1 − 1/χn]

}

, (8)

where χn(k) is the dimensionless susceptibility given by

χn(k) =
NF U

εF

1

β

∑

l

θlθl+k. (9)

The Γ on the right hand side of Eq.(6) represents the ver-
tex correction satisfying the Ward-identity [13]. When
we neglect the vertex correction, Γ = 1. If we assume
a weak frequency dependence of Γ, the vertex function
Γ reduces to Z(ipm). In this work, we treat the vertex
correction exactly, and Γ is given by

Γ =
[ ipnZ(ipn) − ipmZ(ipm)

ipn − ipm

]

. (10)

Solving Eq. (6) self-consistently yields Z(iω) in the Mas-
tubara frequency. In order to calculate σ(ω), analytic
continuation of iω → ω + iδ should be performed to get
Z(ω) in real frequency. The numerically exact analytic
continuation of standard Eliashberg equation is usually
performed by the iterative method developed by Mar-
siglio, Shossmann, and Carbotte (MSC) using a mixed-
representation [14]. But when we include the vertex func-
tion exactly, the MSC method can not be applied because
it needs a specific form of equation. Here, in order to con-
sider vertex correction exactly, we do the alanytic con-
tinuation by employing the iterative method extended

by Takada [15]. In this case, Eq. (6) is transformed to a
mixed representation as fallow:

Z(ω) = Z̃(ω) +

∫

∞

0

dΩP (Ω)

{

[nB(Ω) + nF (ω + Ω)]

× G(ω + Ω)
[ (ω+Ω)Z(ω+Ω)−ωZ(ω)

Ω

]

+ [nB(Ω)+nF (Ω−ω)]G(ω−Ω)

×
[ (ω−Ω)Z(ω−Ω)−ωZ(ω)

−Ω

]

}

, (11)

where

Z̃(ω) = 1 +
1

ωβ

∑

m

∫

∞

0

dΩP (Ω)
( 1

ipm−ω−Ω
−

1

ipm−ω+Ω

)

× G(ipm)
[ ipmZ(ipm)−ωZ(ω)

ipm − ω

]

+
i

πτ

θ(ω)

ω
,

P (Ω) = −
1

π
ImΛ(Ω)

Λ(Ω) = λch(Ω) − λph(Ω) − λsp(Ω)

G(ipm) = 2θ(ipm), GR(ω) = 2iθ(ω). (12)

Z̃(ω) of Eq. (11) represents the renormalization function
obtained by substituting iω to ω + iδ before the fre-
quency summation. The second term is the correction to
Z̃(ω) to yield the correct retarded renormalization func-
tion Z(ω) one would have obtained if the analytic contin-
uation were performed after the frequency summation.
Putting the solutions of Eq. (6), Z(iω), into the Z̃(iω)
Eq. (11) yields a self-consistent Eliashberg-type equation
in the real frequency. Then, Z(ω) can be obtained by
computing iteratively Eq. (11).

In order to model fullerene superconductors, three
truncated-Lorentization functions were used to represent
α2F (Ω) as follow [4,10]:

α2F (Ω) =

3
∑

ν=1

α2
νFν(Ω),

Fν(Ω) =

{

1
R

[

1
(Ω−ων)2+Γ2 − 1

Γ2
c
+Γ2

]

, for|Ω − ων | ≤ Γc,

0, otherwise,
(13)

where Fν(Ω) is the truncated Lorentizian centered at
ων with the width of Γ = ων/5, Γc is the cutoff fre-
quency of Γc = 3Γ, and R is normalization constant
such that

∫

∞

0
dΩFν(Ω) = 1. Various theoretical and

experimental estimates do not agree well each other in
terms of distribution of coupling strength α2

ν among dif-
ferent modes. These estimates show, however, that the
phonon frequency derived from intramolecular Ag and
Hg modes are distributed over 0.03 − 0.2 eV with the
total λ in the range of 0.5 − 1 eV. In view of this, we
represent the phonon modes with three groups centered
around ων = 0.04, 0.09, 0.19 eV, and 2NF α2

ν/ων =
0.3λs, 0.2λs, 0.5λs, respectively, for ν = 1, 2, 3. Note
that

∑3
ν=1 2NF α2

ν/ων = λs. The λs sets the strength
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of α2F (Ω) and NF α2F (Ω)/λs is independent of λs. For
infinite bandwidth superconductors, λ is equal to λs in
the limit Γ → 0. For a finite bandwidth system, how-
ever, λ is reduced from λs because the available states
to and from which quasiparticles can be sccattered are
restricted as the bandwidth is reduced.

III. RESULTS

The self-consistent equation of Eq. (1) is solved nu-
merically as described in the previous section to obtain
Z(ω). Then, the optical conductivity is calculated from
the Eq. (5). Fig. 1 shows the optical conductivity σ(ω)
as λ is varied when the Coulomb interaction U is set
to 0 for a reference. Here, the Fermi energy εF , tem-
perature T and impurity scattering rate 1/τ are set to
0.25, 0.001, 0.01 eV, respectively. This result shows
quite a similar behavior to van den Brink et al. calcula-
tion. As λ is increased, the width of Drude peak becomes
narrower and it’s weight is transferred to a mid-infrared
spectrum. However, the reduction of Drude weight is less
than the factor of (1+λ), because of the finite bandwidth.
The inset shows a MIR absorption spectra obtained by
extracting Drude part from the total optical conductivity.
In determining the Drude weight, fitting procedure was
carefully employed and confirmed by examining zero fre-
quency extrapolation in the Mastubara frequency which
is proposed by Scalapino et al [16]. The three Lorentizian
peaks of α2F (ω) in the electron-phonon paring kernel are
attributted to the development of these MIR peaks. But,
the MIR peaks are broadened and move to slightly high
frequencies. Fig. 2 shows the MIR absorption due to the
Coulomb interaction. The MIR part is also extracted by
fitting as shown in the inset. In order to focus on how U
affects the total optical conductivity, λ is set to 0. εF ,
T and 1/τ are same as in Fig. 1. The Coulomb interac-
tion induces the strong ω dependence of renormalization
function Z(ω), and the low frequency strong ω depen-
dence of Z(ω) distorts the Drude part of optical con-
ductivity and induces the MIR absorption in the fairly
low frequency region. As the impurity effect is enhanced,
the MIR absorption due to Coulomb interactions tends
to shift to higher frequency and finally merge together
with the MIR peaks developed by electron-phonon inter-
action, as shown in Fig. 3 for UNF = 0.3 and λ = 0.7.
Note that the position of this merged MIR peak in Fig.
3 is around and above 0.06 eV which is experimentally
observed value of DeGiorgi.

Fig. 4 is σ(ω) of doped fullerenes with T = 0.005 eV,
εF = 0.25 eV, 1/τ = 0.1 eV, UNF = 0.3, and λ = 0.7,
which is to be compared with the experimental observa-
tions. The Drude weight is reduced to 0.467 of the total
intra-band optical weight. The reduction factor of the
Drude weight by electron phonon interaction is 1 + λ,
and the finite bandwidth futher restricts the reduction
factor. It therefore seems unlike that the Drude weight

less than about 0.6 of the total intra-band spectral weight
can be explained without the Coulomb interactions, when
we take λ ≈ 0.7 − 0.8. The Coulomb interaction sup-
presses the Drude part substantially by inducing ω de-
pendence of the renormalization function Z(ω) in the low
frequency region. We think that the large reduction of
Drude weight like the DeGiorgi experiment is a result
of the strong Coulomb interaction between conduction
electrons in addtion to the electron-phonon interaction.
However, our results are still not sufficient to explain ex-
perimentally founded results: (a) The Drude weight is
about 0.46 of the total intra-band optical weight with a
resonable set of parameter values while DeGiorgi found
0.1 − 0.2. (b) The MIR absorption is very broad which
begins around 0.02 eV, has a peak around 0.07 eV and
extends well over the Fermi energy.

IV. SUMMARY AND CONCLUSION

In this paper, we tried to give an explanation for the
unusual behavior of optical conductivity in the normal
state A3C60. It is generally accepted that the fullerene
superconductor could be characterized by the phonon-
mediated s-wave superconductor [1,8]. However, a few
experiments like optical conductivity still remain not
understood by the electron-phonon scattering together
with the disorder effects. Our motivation lies in that
the fullerene superconductors have such a narrow band-
width that the phonon frequency, the Coulomb interac-
tion, and the Fermi energy are all comparable, ωph ∼
V ∼ εF . In order to consider properly the Coulomb
interaction and the narrow bandwidth of fullerene super-
conductors, the self-consistent Eliashberg-type coupled
equations are solved to obtain the renormalized Green’s
function. The theory includes the frequency dependent
screened Coulomb interaction together with the electron-
phonon interaction and includes the vertex correction via
Nambu’s method. In order to treat the vertex function
exactly, analytic continuation is performed via the it-
erative method of mixed repersentation which is devel-
oped by Takada. Once we get renormalization function
Z(ω) in real frequency, we can calculate optical conduc-
tivity in normal states. As we expected, the electron-
phonon interaction is not suffficient to resolve the sub-
stantial reduction of Drude weight and pronounced MIR
peak. The strong Coulomb interaction induces ω depen-
dence in renormalization function Z(ω). As a result, the
Drude form in optical spectra is distorted accompanying
the reduction of Drude weight. When the impurity ef-
fect is enhanced, the MIR absopption induced by strong
Coulomb interaction merge together with the MIR peaks
due to electron-phonon scattering showing large reduc-
tion of Drude weight and MIR peak around 0.06 eV.
Although it is not sufficent to explain experimentally
founded results, our result is close to DeGiorgi’s experi-
ment. We improve Gunnarsonn’s calculation by consid-
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ering the electron-electron interaction and finite band-
width effects explicitly. In conclusion, the unusual be-
havior of optical conductivity of the normal state A3C60

reveals the fact that both the Coulomb interaction and
electron-phonon interaction are important in examining
dynamical properties of fullerene superconductors.
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Nicol, O. Klein, G. Grüner, P. Wachter, S.-M. Huang, J.
Wiley, and R.B. Kaner, Phys. Rev. B 49, 7012 (1994);
L. DeGiorgi, Mod. Phys. Lett. B 9, 445 (1995).

[2] Y. Iwasa and T. Kaneyasu, Phys. Rev. B 51, 3678 (1995).
[3] J. van den Brink, O. Gunnarsson, and V. Eyert, Phys.

Rev. B 57, 2163 (1998).
[4] H. Y. Choi, Phys. Rev. Lett. 81, 441 (1998).
[5] A. B. Migdal, Sov. Phys. JEPT 7, 996 (1958).
[6] D. J. Scalapino, in Superconductivity, ed. by D. R. Park

(Dekker, N. Y.), vol. 1, 449 (1969).
[7] P. B. Allen and B. Mitrović, in Solid State Physics vol.
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Figure Captions

Figure 1. The optical conductivity as a function of ω
for various electron-phonon coupling constants λ when
T = 0.001 eV, εF = 0.25 eV and 1/τ = 0.01 eV. U is set
to 0 for a referrence. As λ is increased, the width and the
weight of the Drude peak are reduced. The inset shows
a decomposition of the total conductivity into the Drude
and MIR parts for λ = 0.7.

Figure 2. The MIR spectra induced by the Coulomb
interaction when T = 0.001 eV, εF = 0.25 eV, 1/τ = 0.01
eV and λ = 0. The inset shows a decomposition of the
total conductivity, as in Fig. 1, into the Drude and MIR
parts for UNF = 0.5.

Figure 3. The MIR spectra as the impurity scattering
rates 1/τ are varied when T = 0.005 eV, εF = 0.25 eV,
λ = 0.7 and UNF = 0.3. When 1/τ = 0.01 eV the lower
peak is mainly from the Coulomb interaction while the
other peaks are from the electron-phonon interaction. As
1/τ is increased, these peaks are merged altogether and
finally evolve into a single broad peak around 0.06 ∼ 0.1
eV.

Figure 4. The total optical conductivity with it’s
Drude and MIR parts for T = 0.005 eV, εF = 0.25 eV,
1/τ = 0.1 eV, λ = 0.7 and UNF = 0.3. The Drude part
in the low frequency region is substantially suppressed
due to the strong Coulomb interaction. Consequently,
the missing spectral weight is transfered to the broad
MIR peak, which peaks around 0.07 eV and extends well
into the higher energy region. The ratio of the MIR
spectral weight to the total intra-band spectral weight
is 0.533.
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