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Abstract: Properties of the even-even Pt and Os isotopes are investigated in the framework of the inter- 
acting boson approximation, including the neutron-proton degree of freedom. It is shown that the 
transition between the gamma unstable region of the heavier Pt isotopes towards the more axially 
symmetric deformed features of the lighter Os and Pt isotopes can be described very well by the 
IBA hamiltonian ; qualitatively the properties of the transitional region are reproduced by the smooth 
change of one parameter, Zv, which determines the character of the quadrupole-quadrupole inter- 
action. Calculated excitation energies and electromagnetic properties are compared with experiment. 

I. Introduction 

There exists a great variety of approaches to nuclear collective motion. While 
almost all of these have in common that the basic degrees of freedom are represented 
by the (five) quadrupole collective variables, the various models differ greatly both 
conceptually and in practical aspects. While some of the models are completely 
phenomenological, like the method of collective potential energy surfaces of Greiner 
and collaborators 1,2), other models do have a relation to a microscopic picture but 
are very complicated, like the boson expansion approach as applied by Kishimoto 
and Tamura 3.4), or the pairing-plus-quadrupole model of Kumar and Baranger 5, 6). 

Recently a new approach to describe nuclear collective properties has been 
proposed, the interacting boson approximation (IBA) of Arima and Iachello 7,1o). 
In this model, which has the virtue of being simple, the collective properties are 
described in terms of pairs of nucleons coupled to angular momentum L = 0 and 
L = 2, which are treated as bosons. In the original formulation of the model (hereafter 
IBA-1) the many-body states are classified according to the totally symmetric 
irreducible representations [N] of the group SU(6). Here N represents the total 
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number of active proton and neutron pairs with respect to a closed core. The most 
general two-body hamiltonian within the boson space is written in terms of the 
generators of the groups SU(6). It has been shown, that in three special cases this 
hamiltonian can be expressed in terms of generators of a subgroup of SU(6), namely 
the SU(5) group 7), SU(3) group 8) and the 0(6) group 9, lo). These extreme cases, 
which permit the construction of analytic solutions of energy spectra and transition 
rates, correspond (for N ~ oo) to the anharmonic vibrator, the axially symmetric 
deformed rotor, and the 7-unstable nucleus, respectively, of the geometrical picture. 

The transitional regions between these extreme cases can also be treated in a 
simple way by numerical diagonalization of the SU(6) hamiltonian. As an example 
the transitional region between the SU(5) and SU(3) limits (experimentally observed 
in the Sm isotopes) has been investigated in detail in ref. 12); it appeared that in this 
transitional region the energy spectra could be described by the variation of only one 
parameter, e, the d-boson energy. Similarly the Pt and Os isotopes have been inves- 
tigated as an illustration of the 0(6) ~ SU(3) transition in the framework of IBA-1 
by Casten and Cizewski ~3). In this case it was found that although many of the 
characteristic features of the nuclei in this region which are observed experimentally 
can be reproduced by the SU(6) model [especially B(E2) selection rules and branching 
ratios] the energy levels in the 0(6) region could not be fitted satisfactorily in the 
IBA-1 approach, not even in a perturbed 0(6) scheme. 

More recently a generalized version of the IBA model has been proposed TM 14) 
in which neutron and proton boson degrees of freedom are treated independently 
(IBA-2). The physical motivation for treating neutrons and proton separately is 
that the interaction between like bosons is expected to be quite different from the 
one between unlike bosons. In fact it is well known that the strong and attractive 
neutron-proton interaction is mostly responsible for the collective behaviour of 
nuclei, and that in its absence (as in semi-magic nuclei) little collectivity occurs. 
Therefore IBA-2 seems to have a more direct microscopic foundation. In IBA-2 
the states can be classified according to the group structure SU(6) ® SU(6). Although 
it is possible to construct also in this case analytic solutions for limiting cases, most 
realistic applications require numerical diagonalization of the hamiltonian. 

It appears that many features of the limiting cases of IBA-1 mentioned above are 
obtained for special choices of the parameters of the more general hamiltonian of 
IBA-2. 

It is the aim of the present investigation to study nuclei around mass number A -- 
190, in a phenomenological way in the framework of IBA-2. The description of the 
overall trend will be emphasized more than the attempt to fit each nucleus in detail. 
As a result it will be possible to correlate a large amount of data in terms of few 
parameters. In addition, the information obtained in this way on the behaviour of 
the interaction parameters as a function of neutron and proton number can serve 
as a test of microscopic theories is). [Actual calculations are being performed by 
Otsuka et aL with promising results 1~).] 
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In the present study specifically the Pt and Os isotopes with mass number A > 184 
will be considered. In sect. 2 the structure of the IBA hamiltonian will be discussed. 
In sect. 3 the calculated energy spectra and two-neutron separation energies are 
presented and compared with experiment; results on electromagnetic transition rates 
are given in sect. 4. Other observables (two-neutron transfer cross sections, monopole 
properties) are discussed in sect. 5. Concluding remarks and a comparison with the 
results of other approaches are presented in sect. 6. 

2. The IBA-2 model 

2.1. THE 1BA-2 HAMILTON1AN 

The two-body hamiltonian in the IBA-2 formalism is expressed as 11, 16) 

H = E~nd~+E~ndv+~Q~ 2)" Q~2)+ V,~+ V ~ + H M + H R + H  c. (2.1) 

Here the first two terms represent the single-boson energies for protons (~) and 
neutrons (v), respectively: ~v~ is the energy difference between d,~) and s~)  bosons, 
and n d ~  is the number of proton (neutron) d-bosons. For simplicity we will assume 
e~ = ev = e in this work. The third term represents the main part of the boson-boson 
interaction, namely the quadrupole-quadrupole interaction between neutron and 
proton bosons with strength ~c. The quadrupole operator is expressed as (p = n, v) 

t t (2) t t2) ~-eo(a) = (dose + s fle) + zo(d fle) • (2.2) 

The significance of the parameter Zp which determines the structure of the quadrupole 
operator, will be discussed below. The terms V== + V~ represent d-boson conserving 
residual neutron-neutron and proton-proton interactions: 

Vpo = ½ E "-~o,"e"o," '"*'~*"3.' (aoaTo)'a', P : n, v. (2.3) 
3.=0,2,4 

Such an interaction was found to be especially important near closed shell nuclei; 
in the vibrational limit it gives rise to a splitting of the SU(5) two-phonon triplet 
(d*d*)~L)lO), L = 0, 2, 4. It can be argued 16) that the V,~(Vv3 interaction is only impor- 
tant when one deals with a large number of active protons (neutrons) and a small 
number of active neutrons (protons). 

The term H M is given by 

s~d~) .(s~a~-s~[[~)'2']+ Z ¢~(dfl~) (a~[~) , (2.4) 
3.=1,3 

and will be referred to as the majorana term for the following reason. In IBA-2, 
in addition to basis states that belong to the totally symmetric representation [N] 
of SU(6), also states with an antisymmetric character occur corresponding to other 
representations of SU(6): [ N -  1, 1], [ N - 2 ,  2] . . . . .  It can be shown that the residual 
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boson-boson interaction has the property that the lowest eigenstates predominantly 
belong to the totally symmetric representation and therefore have a large overlap 
with the eigenstates obtained with IBA-1. We note that realistic hamiltonians like 
(2.1), in which the quadrupole-quadrupole interaction between the like and unlike 
bosons is different, in general will give rise to some mixing between the various SU(6) 
multiplets. The majorana operator has the property of shifting the various multiplets 
and can therefore conveniently be used to adjust the excitation energies of states 
with lower symmetry character. In the special case ~l = 32 = ~3 all states in a given 
multiplet are shifted by the same amount. The interaction proportional to ~l and ~3 
will affect mainly the low-lying L" = 1 + and 3 + states in the [ N - 1 ,  1] multiplet, 
respectively. 

The term H R represents additional interaction terms between the bosons, which 
on the basis of microscopic considerations are thought to be less important. For 
completeness they are given below: 

H.=  E E ' 
2 = 0 , 2 , 4 -  l ~ = n . v  

+ Woo(d~d~)~°'(sosp) ] + h.c. (2.5) 

Finally H c contains interactions that affect binding energies but not excitation 
energies 12) 

H c = ~ (ApNp+½BoNp(N p -  1))+A,vN~N,.+C. (2.6) 
p = Tt , "V 

2.2. THE L1M1TING CASES 

It can be shown that for special choices of the parameters in eq. (2.1) solutions are 
obtained which are similar to the limiting cases constructed in IBA-I. 

(a) "The SU(3) limit." In the SU(3) limit of IBA-1 [ref. 8)] the hamiltonian is 
expressed in terms of  the Casimir operators of  the group chain SU(3) ~ 0(3). The 
energy eigenvalues are given by 

E([N](2, p)KLM)  = ctL(L + 1) + fl(2 2 + ].2 2 -~-/~/L/-~- 3(2 + p)), (2.7) 

where the SU(3) labels (2, IL) take on the values (2,/~) = (2N, 0) for the ground-state 
band and (2,/~) = ( 2 N - 4 ,  2) for the/3- and 7-band. In 1BA-2 the SU(3) features of 
axially symmetric deformed rotor are obtained by taking only the ~:Q~Z). Q~2) inter- 
action in (2.1) and neglecting all other interaction terms. This can be seen by 
rewriting 

xQ~Z). Q~) = ¼x{(Q~2)+ Q[.Z))+ (Q~Z)_ QT))}. {(Q~2) + Q~2))_ (Q~)_ Q~2))}. (2.7) 

Since the low-lying eigenstates qJi predominantly belong to the symmetric representa- 
tion of SU(6), the norm of the state (Q~2) _ Q~z))kOi ) is small. Therefore the interaction 
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(2.7) can effectively be replaced by H = ~rq,~,~l-,,,~2)_o~2)].(Q~Z)+Q~Z)),T~., which for 
Z~ = Z, = +½x/7 is a special case of the SU(3) hamiltonian of IBA-1 [ref. s)]. 

(b) "The 0 (6 )  limit." In the 0(6) limit the IBA-1 hamiltonian is expressed 9. ~o) in 
terms of  the Casimir operators of  the group chain 0(6) ~ 0(5) ~ 0(3). The eigen- 
values can be written as 

E([N],  ozvaLM ) = ¼A(N-a) (N+a+4)+~Bz( z+3)+CL(L+ 1), (2.8) 

where the quantum numbers o and z (seniority) characterize the totally sym- 
metric representations of  the groups 0(6) and 0(5), respectively; they take on 

the values : o = N, N -  2 . . .  ; ~ = a, o -  1 . . . . .  0. For  example, the ground-state 
band has a = N, L = 2~, the 2 + state a = N, z = 2, and the 0~- and 0~- states have 

a = N, r = 3 and o = N - 2 ,  r = 0. Strictly speaking, in order to obtain the 0(6) 
limit of the hamiltonian (2.1) the complete elimination of the one d-boson changing 
terms, i.e. Z~ = Z~ = 0, is required. It turns out, however, that the less stringent 
condition Z~ "~ - Z,. also leads to spectra that have many of the 0(6) features and in 
addition avoids some of  the predictions of  the pure 0(6) limit, which do not 
agree with experiment, such as vanishing quadrupole moments. The choice Z~ = - Zv 
results in the elimination of  the one-boson changing term in the interaction between 
symmetric states, and therefore these states can be characterized by the boson 
seniority quantum number  z of the 0(6) limit ~o). In order to see things in more 
detail it is convenient to rewrite the quadrupole-quadrupole interaction as 

~ n  t (o) t t co) t t t (2) 0 (2). O~ 2 ) =  [(d~aT,) s=s~+(d=~[,,) s~s=]+ Z Xv'(dtv'~v')(2)'(dpsv+so~[v) 
p:~p' 

+ [(d~d*~)(°'s=s~ + (g=~)(°)s~*s~] + Z~zv(d~*a7 ){2) • (d*Ta~)' 2'. (2.9) 

The first term in eq. (2.9) gives rise to an effective contribution to e; the second term 
is expected to give a small contribution when acting on states with maximum sym- 
metry in case of Z~ ~ -g,.- The third term can be regarded as the two d-boson 
changing parts of the 0(6) pairing operator:  P6 = ~( dr" d*-s*s*)(~. [[-ss). The last 
term in eq. (2.9) contains apart  from a d-boson pairing term also 0(6) symmetry 
breaking terms. 

3. Energy spectra and binding energies 

The hamiltonian (2.1) was diagonalized in a complete set of spherical basis states 
[(d*~)"a'~(L,,(o,~Xs*~)~e~-"a~(d*~)"dv(L~ekv)(st)U"-"a~]LlO), where the labels ~bv, ~b~ are used 
to specify the states completely. The values of the proton (neutron) boson numbers 
N~(Nv) are determined by half the number  of proton (neutron) holes with respect 
to the closed shells Z = 82, N = 126; i.e. N ,  = 2 (3) for the Pt (Os) isotopes, and 
N v takes on the values 4 (x96pt, 19~'Os) to 9 (lS6pt, 184Os). 
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3.1. CHOICE OF PARAMETERS 

Since the hamiltonian contains many parameters it is unpractical and not very 
meaningful to vary all parameters freely. Instead it is convenient to use the behaviour 
of the parameters predicted by a microscopic point of view as a zeroth-order approx- 
imation. In a simple shell-model picture based upon degenerate single-nucleon 
levels 15) the expected dependence of e, K, Z~ and Z~ on neutron (N~.) and proton 
(N~) boson numbers can be expressed as: 

= constant, 

K = ~c~K~, ~p = / f 2 p -  N p  k.~o ~ E 2 p -  2 N p  v~0) 
• -p , Zp - ~ / / f 2 o - U o " P  , p = n,  v. (3.1) 

V f2p-1 

Here x~o) and Z~ °) are constants, and f2p is the pair degeneracy of the shell. We see 
that while Kp has always the same sign, Zp changes sign in the middle of the shell. 

In realistic cases the estimates of eq. (3.1) are expected to be valid only approxi- 
mately. In our approach we have imposed somewhat weaker constraints on the 
parameters: (i) it is assumed that within a series of isotopes (isotones) Z~ (Z,.) does 
not vary at all; (ii) the parameters e, ~ and Zv are assumed to be smooth functions 
of N,.. 

Concerning the sign of Zv and Z, a complication arises. From very simple micro- 
scopic considerations it follows 17) that the Z's [which also determine to a large 
extent the sign of the quadrupole moment of the 2~- state (see below)] are negative 
in the region where the valence shell is less than half filled (particle-bosons) and 
positive in the region where the valence shell is more than half filled (hole-bosons). 
Quantitatively, such a behaviour was confirmed in other phenomenological calcula- 
tions with IBA-2. For example, in a study of the Ba isotopes with 72 < N < 80 a 
good fit to the energy levels was obtained with Z~ ~ 0.90 [ref. 16)]. Since in the naive 
shell-model picture in the Pt region both neutrons and protons are hole-like and 
therefore both Z's would be positive, there would be no way to obtain an 0(6) type 
spectrum, which requires opposite signs of Zv and Z.. This indicates that the situation 
is not so simple and that more complicated effects play a role, such as a possible non- 
closedness of the Z = 82 or the N = 126 core. Although the hamiltonian is invariant 
under a simultaneous change in sign of both Z. and Z~ and thus equally good fits 
to energy spectra can be obtained for both combinations Zv > 0, Z~ < 0 and Z~ < 0, 
Z~ > 0 there is a preference for the choice Z~ > 0, Z, < 0. Namely, only with this 
choice the observed sign of the mass quadrupole moment of the 2~- state in 194,196pt  

can be reproduced (see sect. 4). In addition in this case the values of the parameters 
that are needed to describe the lighter Os isotopes which have a prolate rotor character 
(Zv, Z~ < 0) are smoothly connected to those of the Pt isotopes. 

The remaining parameters play a less important role and are used mainly to 
improve the fit with experiment. In this paper only Coy and C2~, representing part 
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TABLE 1 

Parameters used in the IBA hamiltonian (in MeV) 

213 

Nucleus e ~: 

196pt 0.58 --0.18 
194pt 0.58 - 0 . 1 8  
192pt 0.58 - 0 . 1 8  
19°Pt 0.58 - 0 . 1 8  
188pt 0.58 - 0 . 1 6  
~86pt 0.62 -0 .145  

194Os 0.45 - 0 . 1 5  
192Os 0.45 - 0.15 
19°Os 0.45 - 0 . 1 5  
188Os 0.45 - 0 . 1 5  
18°Os 0.45 - 0 . 1 4  
lS40s 0.50 -0 .135  

Zv Zrt Co,, C2v C4v ~2 El = ~3 

1.05 - 0 . 8 0  0.60 0.02 0.00 0.04 - 0 . 1 0  
0.95 0.55 0.04 
0.80 0.45 0.00 
0.45 0.00 - 0 . 0 9  
0.00 - 0 . 2 5  - 0 . 1 3  

- 0 . 5 0  - 0 . 2 5  - 0 . 1 6  

1.05 - 1.30 0.60 0.02 
0.95 0.55 0.04 
0.80 0.45 0.00 
0.45 0.00 - 0 . 0 9  
0.00 - 0 . 2 5  - 0 . 1 3  

- 0 . 5 0  - 0 . 2 5  - 0 . 1 6  

0.00 0.04 - 0 . 1 0  

of the d-boson conserving interaction between neutron bosons, were used as free 
parameters independent of N~. Finally, the values of ~2 and ~1 = ~3 were kept 
constant. The parameters used for the various nuclei are shown in table 1 and the 
calculated energy spectra compared with experiment in figs. 1 and 2. 

It is seen that parameters are constant or vary smoothly: within a series of isotopes 
g~ does not vary, the variation in e is very small and there is a slight decrease of the 
value of • for the lighter Pt and the Os isotopes. The change in character of the 
spectra through both series of isotopes is essentially due to two effects: (i) the decrease 
of the value of Z~, and (ii) the increase of the number of neutron bosons N v. We note 
that the behaviour of e, ~, g~ and X~ is in qualitative agreement with microscopic 
considerations [see eq. (3.1)]. It was found that both C0v and C2~ vary from a repulsive 
value for N -,~ 118 (N v -- 4) to an attractive value for N -,~ 108 (Nv -- 9). Such a 
behaviour agrees with the trend found in other regions x6). The positive value of 
~2 guarantees that no low-lying anti-symmetric multiplets occur for which there 
is no experimental evidence. 

3.2. Pt 1SOTOPES 

The spectra and wave functions of  those Pt isotopes for which g,, ~ - Z ,  show 
many of the characteristics of the 0(6) limit of the IBA-1 hamiltonian. Compared 
to the perturbed 0(6) picture of IBA-1 [ref. x3)] the overall agreement with the 
experimental level scheme has improved: in contrast to IBA-1 the order of the 0~- 
and 3 + is correctly predicted in the heavier Pt isotopes and the position of the 2~- 
state relative to the 0 f  state has also improved. We note that the position of the 3 
state, although lower than in IBA-1, is still calculated too high, especially in 194pt. 

In the present case it would have been possible to further lower its energy by decreasing 
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Fig. 1. Compar i son  between calculated and experimental  energy levels in Pt. The  experimental  levels 
are taken from ref. ~8), 

the value of ~3. However, such a procedure seems rather ad hoc and has not been 
pursued. In the transitional region with increasing Nv, the increase in the matrix 
elements of the Q~. Q~ force (proportional to N~NJ, in combination with an increase 
in [g~ + Z~I gradually lead to a more SU(3) type spectrum 8). The moment of  inertia 
of the ground-state band increases, the quasi- 7 band is pushed up, and the 0~" becomes 
a member o f a  K = 0 fl-band. It is seen that only one of the two 0 + states observed 
around 1.5 MeV in 192,194pt is reproduced; one of these states probably does not 
have an SU(6) ® SU(6) character. 
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3.3. THE Os ISOTOPES 

The Os isotopes between mass number A = 184 and A = 192 exhibit a transition 
similar to the one between l~6pt and x96pt. It is found that the Os and Pt isotopes 

can indeed be described with one set of parameters Z, (see table 1). With increasing 
boson number the moment of inertia of the ground-state band increases, the isotopes 
become more stable against 7-vibrations and the/~-band shows a maximum excitation 
energy around A = 188. Here the character of the 0 + state changes rather abruptly 
from a z = 3 state to a/%vibrational state. We note that the nucleus ~94Os forms an 
interesting puzzle. Two recent experiments a9) have shown a rather large increase 
of the 2~ energy with respect to ~92Os, even reversing the order of the 4 + and the 
2~ states. In the present approach this effect cannot be reproduced, without sub- 
stantial adjustment of the parameters ~,. and ~ .  

The difference between the spectra for the Os and Pt isotopes can be ascribed to: 
(i) the larger value of Iz~+z~l for the Os isotopes and (ii) the larger proton boson 
number N,  in Os, which both lead to a stronger quadrupole-quadrupole interaction 
and thus to a spectrum with more SU(3) features. 

3.4. T W O - N E U T R O N  S E P AR AT ION ENERGIES 

Within the framework of the present model we can also calculate binding energies. 
Returning to eq. (2.6) we note that for fixed proton-boson number N~ the two-neutron 

separation energies can be expressed as 

Szv ~- BE(Z, N ) - B E ( Z ,  N - 2 )  = Eo(N~)-Eo(N~.+ 1) +A',.+B,N,., (3.2) 

where Eo(Nv) is the binding energy obtained with the hamiltonian (2.1) without the 
term H c, and A~ = A,+A~vN ~. The calculated separation energies are shown in 
fig. 3. The values of the parameters that are obtained from a fit to the data are B, = 
0.609 MeV,.Av = 14.037 MeV and A,, = -1 .120  MeV. It is seen that the effect 
of the change of character of the hamiltonian between the SU(3) and 0(6) limits has 
only a minor effect on the slope of Szn, this in contrast with the situation in the 
SU(5)-SU(3) transitional region 12), where a clear signal of a shape phase transition 

is observed. 

4. Electromagnetic transition rates 

4.1. THE E2 O P E R A T O R  

To the extent that the transition operator is a one-body boson operator the most 
general E2 op~,~ator can be expressed as 

T(E2) = e~QT)+ e~Q~. 2}, (4.1) 
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Fig. 3. Comparison between calculated and experimental two-neutron separation energies. The experi- 

mental values are taken from ref. 20). 

where D ~2) (s~dp , , 2 ) -  , ~2) =.p = + dpsp) + gp(dpdp) , p = n, v. It seems natural to use in eq. (4.1) 
the same form for the neutron and proton quadrupole operators as in the hamiltonian 
(2.2), i.e. to set ~ = g~ and ~ = Z~. The ratio ofe~ and e~, required to fit experimental 
B(E2) values, may depend on the precise nature of the experimental method used 
in determining E2 matrix elements, i.e. the extracted "B(E2) value" may have different 
values for purely electromagnetic probes (Coulomb excitation, ~-decay, electron 
scattering) and for hadronic probes [(p, p'), (~, ~'), (n ±, n ±) reactions]. In fact one 
would expect that electromagnetic processes are relatively more sensitive to the 
proton distribution than hadronic processes, although it is well known that effects 
from core polarization tend to reduce the zeroth-order difference appreciably. 

Due to lack of quantitative information in the following equal boson effective 
charges, e~ = e~, will be used to describe the experimental B(E2) values, unless 
stated otherwise. 

Because of the large similarity of the structure of the quadrupole operator  and 
the wave functions in the IBA-1 and IBA-2 approaches it is expected that the E2 
selection rules in the present case are nearly the same as those in the IBA-1 model. 
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This will be true in particular for the extreme cases. In the 0(6) region where seniority 
z is a good quantum number the d-boson changing terms of eq. (4.1) only connect 
states with Az = 4-1; the d-boson number conserving terms which could connect 
states with Ar = 0 tend to cancel each other because of the opposite signs of Z~ 
and Z,.. In practice, however, this cancellation is not complete, due to the fact that 
Z~ + X,. # 0. Such a breaking of the 0(6) symmetry, however, seems realistic since it 
leads to the observed non-zero quadrupole moments. The Aa = 0 selection rule of 
IBA-1 is expected to be violated due to the presence of the 0(6) symmetry breaking 
terms in eq. (2.8). Finally, it can be shown that admixtures of states with lower symme- 
try, which are present in for example the 3 ;- state will break the 0(6) selection rules 
only slightly. 

The selection rules for the SU(3) limit are simple s): strong E2 intraband transi- 
tions and vanishing E2 transitions between the ground-state band and the ~- and 

,,-bands. 

4.2. B(E2) B R A N C H I N G  RATIOS 

Some selected B(E2) branching ratios are shown in figs. 4~11 for the Os and Pt 
isotopes. It is seen that in most cases the calculated branching ratios vary smoothly 
from values close to the 0(6) limit for the heavier isotopes to values close to the SU(3) 
limit fi~r the lighter isotopes, in general agreement with experiment. For example, 
the ratios R 1 = B(E2; 3 ;  ~ 2~)/B(E2; 3 ~ ~ 4+), R 2 = B(E2; 2~ --, 0+)/B(E2; 2~ ~ 2~-) 
and R 3 = B(E2; 42 --, 3~)/B(E2; 42 ---, 2~) are very small for the heavier Pt and Os 
isotopes due to the Az = 4- 1 selection rule, which leads to vanishing numerators. In 
the ligher Pt and Os isotopes [for which a perturbed SU(3) scheme is appropriate] 
both numerator  and denominator of  R 1 and R 2 represent weak interband transitions 
yielding a finite value for the ratio (figs. 4 and 5). In R 3 both numerator and denom- 
inator become intraband transitions (fig. 6). On the other hand R 4 -- B(E2:22 ~ ~ 21 )/ 
B(E2; 2~ ---, 0~-) and R s = B(E2; 4~- --* 4~-)/B(E2; 4~ --* 2~-) contain B(E2)'s which 
are allowed for an 0(6) nucleus, while for an SU(3) nucleus the numerators correspond 
to weak interband transitions (figs. 7 and 8). Finally, R 6 = B(E2; 3~ ~ 2~)/B(E2; 
3~ ~ 22) is zero in both limits, but obtains a finite value in the transitional region 

(fig. 9). 
The E2 deexcitation of the 0z ~ and 0~- states shows an interesting pattern, as has 

also been stressed by Casten and Cizewski 13). In the 0(6) region the 02 states have 
a large z = 3 component,  and the ratio R 7 = B(E2; 0~- ~ 2;-)/B(E2; 0~ ~ 2~) is 
small, in agreement with experiment. In the SU(3) region the 0~ state is a member 
of the/%band and again is predicted to decay to the 2~- (y-band) state rather than to 
the 2~ state. The large calculated value of R v for N = 110 (fig. 10) can be related to 
the crossing of the first and second excited 0 + states between 19°pt (lSSOs) and 
lssPt (lS6Os). The 0~ state in the heavier Pt isotopes has a large z = 0 component 
and therefore is predicted to decay mainly to the 2~- (r = 1) state (this in 



R. Bijker et al. / Pt, Os 219 

1.4-- t 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

B (E2;3~'~2~) 
B(E2;3~'~4t+) I ~,ePt 

\ -.- ,AOs 

% 

• ~ ~ ~ "  -------1 0 (6 i  
108 II0 112 114 116 118 

Neutron number 

Fig. 4. Comparison between calculated and 
experimental values of the ratio R 1 = B(E2; 
3~ ~ 27)/B(E2; 3~ ~ 4?). The experimental 
values are taken from refs. 21,25) (Pt) and 
refs. 22.27.30,35,38,39) (Os). In the SU(3) limit 
R1 = 2.50. In the determination of the experi- 
mental B(E2) values and branching ratios cor- 
rections for internal conversion have been taken 
into account; also corrections for M l/E2 mixing 
ratios have been included if these were known 

(figs. 4 11). 
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Fig. 5. Comparison between calculated and 
experimental vahies of  the ratio R 2 = B(E2; 
2~ ~ 0?)/B(E2; 2~ - .  2?). The experimental 
values are taken from refs. 21,25) (Pt) and 

refs. 27,28, 30,32, 33,35,39,40)  (Os) .  

to the 0(6) limit of IBA-1 where this transition is forbidden due to the Aa = 0 selec- 
tion rule). In the Os and the lighter Pt isotopes the 0~ state has a different character 
and is expected to decay mainly to the 2~- state (fig. 11). 

It can be seen from the figures that in the 0(6) region the weak transitions are also 
calculated to be weak, due to the AT = _ 1 selection rule. However, whereas some of 
the magnitudes of these transition ratios experimentally reach a minimum value 
in 196pt (for example, the ratios R1, R 2 and R6) the calculated position of the minimum 
(which in the present approach takes place when the neutron and proton contribu- 
tions are equal in magnitude and opposite in sign) occurs in a lighter Pt isotope. 
The explanation is that the contribution to these ratios mainly comes from the 
d-boson conserving term; in the heavier Pt isotopes there is an effective breaking 
of the A z = _+ 1 selection rule caused by the fact that Xv =~ - X~- 
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Fig. 11. Comparison between calculated and 
experimental values of the ratio R 8 = B(E2; 
03 ~ ~ 2~-)/B(E2; 0~- --* 2+). The experimental 
values are taken from ref. 26) (Pt) and 
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4.3. ABSOLUTE B(E2) VALUES A N D  Q U A D R U P O L E  MOMENTS 

In calculating absolute B(E2) values the simplest approach is to use boson effective 
charges e v = e~ = e B which are constant for all nuclei. With the choice e B = 0.17 (e. b) 
to fit the B(E2; 2 + --. 0 +) in 194pt we have calculated B(E2) values in the nuclei 
194, 196pt ' where there is much experimental information available. The results are 
listed in the tables 2 and 3 together with the results of IBA-1 [refs. 10,45)], those of 
Kumar  and Baranger 5) (KB) and those of Tamura and collaborators 3, 34). It is seen 
that whereas the 0(6) limit of IBA-1 gives already a good description of the stronger 
E2 transitions the present calculation also accounts for the weak E2 transitions which 
correspond to a breaking of the 0(6) selection rules. Furthermore the results of 
IBA-2 are very similar to those of the other calculations. 

The following points are worth noting. First, all calculations overestimate the 
strength of the 0~- ~ 2~ transition in 196pt. Secondly, although the predicted quad- 
rupole moments of the 2 + states in IBA-2 have the correct sign they are too small. 
This discrepancy is very likely due to the fact that the value of X,+X~ for 194,196pt 

used in the present calculation (in which it has not been attempted to describe each 
nucleus in detail) is somewhat too small. Indeed we have checked that an increase 
of  the value of  X~+Xv in the hamiltonian (2.1) yields a larger value of  Q21+ in these 
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TABLE 2 

B(E2) values (in e 2 • b 2) and quadrupole moment (in e - b) for 196Pt 

Transition Exp IBA-2 IBA-1 a) 

2+ --+ 0 + 0.264+_0.011 ") 0.289 0.264 
0.309_+0.021 b) 
0.30 _+0.02 c) 

2 + --+ 2~- 0.318_+0.023 ") 0.400 0.346 
0.342_+0.034 b) 

2~ ~ 0  + 3 x l O  ~'~) 9 x l O  -7 0 

4+ ~ 2~ 0.409 + 0.022 ") 0.395 0.346 

0 ;  ~ 22 0.142 +0 .077  a) 0.465 0.352 

02 ~ --+ 2~ 0.022_+0.010 ") 0.025 0 

4~ --+ 4~- 0.193 _+0.097 ") 0.206 0.167 

4~- --' 22 0.177 ± 0.025 ~) 0.205 0.184 

4 + --+ 2+ 0.003-+0.001 ") 0.005 0 

6 + --+ 4~- 0.421 -+0.116 ~) 0.409 0.352 

Qzt 0.56 _+0.21 d) 0.270 0 
0.49 _+0.18 a) 

W T  °) 

0.273 

0.319 

6 x l O  4 

0.433 

0.388 

0.048 

0.183 

0.248 

0.0003 

0.58 

Parameters used in the calculation G = e~. = e~ = 0.17 e • b. 
a) Ref. 45). b) Ref. 23). c) Ref. 21). d) Ref. 43). ") Ref. 34). 

nuclei. Thirdly, the property of  boson number conservation of  the IBA model leads 
to a reduction of the intraband B(E2; L + 2 --+ L) values with increasing L compared 
to the predictions of other approaches. From fig. 12 one sees that the available experi- 
mental information does not allow one to draw definite conclusions about the 
presence of cut-off effects. 

Finally we turn to a discussion of the trend of some E2 properties through the whole 
transitional region. In this case we compare two prescriptions for the choice of eB: 
(i) assuming constant values of e, and e~ as above, and (ii) assuming that G and e~ 
are equal in 194pt, but otherwise have the same dependence on Nv(N~) as ~ ( G )  
[see eq. (3.1)]. It is seen from fig. 13 that whereas with constant e B the B(E2; 2+ ~ 0 +) 
values increase too fast with increasing Nv (curve A), with renormalized values of 
G and G the observed values are very well reproduced (curve B). Also the trend of the 
weak B(E2, 2~- ~ 0 +) (see fig. 14) and the quadrupole moments of the 2 + states 
(see fig. 15) in the Os isotopes are very well described. As mentioned above the 
calculated values of Q2; in the Pt isotopes appear to change sign too early. 

4.4. T H E  S I G N  O F  P4 IN 192,194pt 

Recently it has been pointed out by several authors 46) that most collective models 
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TABLE 3 

B(E2) values (in e 2 . b ~) and quadrupole moment (in e b) for 194pt 

223 

Transition 

4? --* 2;" 

6~ --*4[ 

8? --*6? 

4~ --, 2 ;  

Exp IBA-2 IBA-1 r) KT ~) KB e) 

0.374 +0.016") 
0.324 _+0.003 b) 

0.47 _+0.03 a) 
0.449 +0.022 b) 

0.32 -+0.08 ") 
0.48 _+0.14") 

0.36 -+0.11 a) 

0.28 _+0.12") 
0.18 -+0.06 " 
0.69 -+0.39 b 

62 ~ 4~" 0.28 --+0.06" 
82 ~ 6 2 

2 ;  ~ O~ 0.0014-+0.0002 ") 
0.0015 -+ 0.0002 ') 

2 ;  --, 2 + 0.58 -+0.07 a) 
0.423 -+0.015 b) 
0.60 -+0.07')  

4~ --* 47 0.87 -+0.43 b) 

4~ --* 2 + 0.01 -+0.005 b) 

Q2~+ 0.63 -+0.06 b) 
0.62 -+0.18g) 

0.357 0.37 0.318 

0.496 0.49 0.506 

0.544 0.52 0.626 

0.515 0.48 0.713 

0.275 0.27 0.302 

0.341 

0.535 

0.318 0.33 0.468 
0.272 

3 x 10 -5 0 0.005 

0.517 0.49 0.351 

0.001 

0.451 

0.276 0.215 

0.004 0.0003 

0.13 0 0.68 0.49 

Parameters used in the calculation e~ = e v = e a = 0.17 e " b. 
") Ref. 24). b) Ref. 42). c) Ref. 23). d) Ref. 3). e) Ref. 5). f) Ref. 10). g) Ref. 43). 

fail to predict the correct sign of P4, a product of E2 matrix elements, 

P4  ° (2~([IT(E2)IIU()(O+IIT(E2)IIU()(2~IIT(E2)II2~)(O~(IIT(E2)II2]). (4.2) 

Experimentally, in 192,194pt one finds 46) P4 > 0. It is obvious that the model 
dependence of the calculated sign of P4 essentially arises from the very small matrix 
elements (0~-IIT(E2)II2~-). In fact in IBA-2 the smallness of this matrix element 
results from a delicate cancellation of neutron and proton boson contributions, and 
thus its sign sensitively depends on the actual values of e~ and % For 194pt the 
prescription e~/e~ = 1 yields P4 < 0; however, the observed sign of P4 can be repro- 
duced with a slightly different choice, for example e~/e~ = 1.2. It is worth noting 
that such a change in eJe, would also improve the agreement with experiment of 
several other weak E2 matrix elements; for example, in 196pt  the calculated values 
of B(E2; 22 ---, 0~-) and R 6 = B(E2; 3? ~ 27)/B(E2; 3~- ~ 2~-) are reduced consider- 
ably, improving the agreement with experiment. In 192pt a more complicated situa- 
tion occurs. In the present calculation the value of the diagonal matrix element 
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<2~-][T(E2)H2~-> is also very small (due to the fact that Z~+Z~ = 0). Therefore the 
sign of P 4  is very sensitive to small variations of both eJe ,  and Zv +)G, precluding 
a meaningful comparison with experiment. 

5. Other observables 

5.1 .  T W O - N U C L E O N  T R A N S F E R  R E A C T I O N S  

In the framework of the IBA-2 the two-nucleon transfer intensities can easily 
be calculated. It has been shown 47) that in lowest order the L = 0 two-neutron 
transfer operators P(°) -_+v can be expressed as 

p(O) ~x/(~2, .-  N,.)s~, p(o) = a,.s~x/(y2,._ Nv), (5.1) 
- v  ~ -  - - + v  
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values. The experimental values are taken from 

refs. 23.2,) for Pt and refs. 32, 33) for Os. 
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(Os). 

where m. is a normalization constant. In the present case where the bosons are hole- 

like p(o) describes the (p, t) reaction. The operator s* has the following selection 
rules: in ' the 0(6) limit st connects the (a = N, z = 0) ground state of the target 
nucleus with the (a = N + 1, z = 0) ground state and the (a = N -  1, z = 0) excited 
0 + state in the final nucleus; in the SU(3) limit s t connects the (2, #) = (2N, 0) ground 
state of the target with the (2, #) = (2N + 2, 0) ground state and the (2, p) = (2N - 2, 2) 
excited 0 + state in the final nucleus. On the other hand the operator s which enters 
in the P ~  operator  for the (t, p) reaction only connects ground states in both limiting 
cases. 

Recent (p, t) experiments ,s , ,9)  on the Pt isotopes indicate a gradual change in 
the excitation pattern of the low-lying 0 + states: in the heavy Pt isotopes the 0~- 
state is excited with about 2 ~o of the ground-state strength and a higher-lying 0 + 
is excited with about  5 ~o of the strength; on the other hand in 18 S pt  the 0~- state has 
5 ~ of the strength and higher 0 + states are not seen at all. It is seen in fig. 16 that the 
IBA calculation qualitatively agrees with the observed trend. We note that it is not 
always possible to uniquely associate a 0 ÷ IBA state with the observed higher 0 + 
states. For  example only one of two 0 + states observed around 1.5 MeV excitation 
energy in 192. t94pt is reproduced in our calculation. On the basis of the E2 decay 
properties it is tempting to associate the 0 ÷ state at 1480 keV in 19*pt with the 0~- 
state in IBA; however, in that case one cannot explain why this state is not seen in 
the (p, t) reaction. 



226 R. Bijker et al. / Pt, Os 

0.18 

016 -- 

0.14 -- 
- - - ,  C I  O~ 
- - , o  o; 

012 -- 

0.I0 

0.08 -- I 

0040'06 -- [ O ~  D /  0 0 

0.02 i~ ~ /  

188 190 192 194 196 
FINAL NUCLEUS 

k- 

m 
n." 
g 
U3 

T- 
L 9  

Z 

Z 
0 

Z 

F- 

! 

180 [ 

~6o 

140 ~ 

120 - 

~oo 

A A p t ( p , t ) A - 2 P t  

• 1 . [ J • 

120 -- 

I00 ~ ~ . ~ ~  
I 

<~ L ~ L 
I 10  112 114 116 118 

Neutron number 

0 A" ZOs(Lp)A0s 

t 

120 122 

Fig. 16. Comparison between calculated and 
experimental Pt (p, t) transfer strengths relative 
to the ground-state strength. The experimental 
values are taken from refs. #s. 49). Uncertainties 

are (10 15)%. 

Fig. 17. Comparison between calculated and 
experimental (p, t) (triangles) and (t, p) (circles) 
ground-state transfer strengths, relative to the 
~gspt (t, p) empirical strength and to 1920s (t, p). 
The experimental values are taken from ref. 50). 

Also in a recent experiment  the absolute  (t, p) cross sect ions for the ground state 
transit ions in the Os  and Pt i so topes  have  been measured  5o). In fig. t7 the calculated 
and experimental  transit ion strengths are compared .  

i 
I 

J 

5.2. E0 TRANSITIONS, ISOMER AND ISOTOPE SHIFTS 

The m o s t  general  o n e - b o d y  rank-zero  operator  can be written as 

T '°, = flo,d~. ~ + flo~d~, cTd~ + 7o~N~ + 7o,N,. (5.2) 

The  fo l lowing  observables  can be expressed in terms of  the operator  T(°): 
(i) The i somer  shift, which  is the difference between  the m e a n  square radius ( r  2 ) 

o f  an excited state and the ground  state in a given nucleus:  

5 ( r  2 ) = ( elr2[e) -- ( O l r Z [ O )  ---- flon~rldn + f lov~ndv,  (5 .3 )  

where  

5rid, = (eld~" a7,le) - (O,Id* o -aT, J0 ).  (5.4) 

(ii) The  i so tope  shift, which  is a measure  o f  the difference in ( r  2)  be tween  two  
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neighbouring isotopes in their ground states: 

A ( r 2 )  = ( 0 [ r Z l 0 ) A  - -  ( 0 [ r Z [ 0 ) A -  2 = flo.And. + flovAnd~ -- Yov, 

where 

227 

(5.5) 

And. = <01d;" iT.lO>N v-  <01dp* 'a~ol0>Nv+ ,. (5.6) 

(iii) The E0 transition matrix elements can be written as 

Z 2 Z 
Pif(E0) = ~o  (fir li) = R~ (fl°"(fld~ " ~[i> + flo~(fld~ • aT~li)), (5.7) 

where R o is the radius of the nucleus. 
A striking feature of the observed isomer shifts is that in the Os isotopes the 

shifts for the 2 [  states are small and negative, and for the 2~ states large and positive 
[ref. 51)]. This effect cannot be reproduced if only the proton contribution [flo~ = 0 
in eq. (5.3)] is included. However, by allowing for independent effective contributions 
of neutrons and protons, flo~ = - 0 . 0 3 6  fm 2 and flo~ = 0.018 fm 2, not only the isomer 
shifts in the Os isotopes can be reproduced but also those in the Pt isotopes (see 
table 4). With these values of  flo, and flo~ the isotope shift can be obtained by fitting 
the additional parameter 7o~ [see eq. (5.5)]. In table 5 we compare the predicted 
isotope shifts (7o~ = - 0 . 0 7 5  fm 2) with those measured in the Os isotopes 52). Finally 
the E0 transition matrix elements can be calculated without new free parameters. 
In table 6 we compare the calculated values of p(E0) with the available experimental 
information 53, 54). 

TABLE 4 

Calculated and experimental isomer shifts 

Nucleus L ~ 

3 ( r  2) (10 -3 fm 2) 

exp th 

188Os 2+ - 0 . 6 6  0.35 
23 16.5 15.93 

19°Os 2+ - 1.73 - 1.70 
2~" 17.2 15.47 

192Os 2+ - 2 . 3 3  - 4 . 2 1  
2~" 9.1 11.62 

x94pt 2+ 3.45 3.62 
2~- 3.57 5.08 

196pt 27 4.49 2.55 

Parameters used in the calculation are: 

flo~ = 18x 10 -3 fm 2, f lon = - 3 6 x  10 -3 fm 2. 

The experimental data are taken from ref. 5~). 



228 R. B(jker et al. / Pt, Os 

TABLE 5 

Ca lcu la ted  and expe r imen ta l  i so tope  shifts in the Os isotopes  

A(r 2)(10 3 fm 2) 

I so tope  pai r  

exp th 

186- ~S4Os 7 9 +  17 54 

188 lSOOs 78_+16 56 
19o 1880s 68-+ 14 70 
192- 19OOs 61 -+ 12 77 

ters used in the ca lcu la t ion  are : 

rio, = 18x  10 3 f m  2, flOlr = - 3 6 x  10 -3 fm 2, 7o,. = - 7 5 x  10 3 ffm 2. 

The  expe r imen ta l  da t a  are t aken  f rom ref. 52). 

6. Concluding remarks 

In this paper we have described various properties of the Pt and Os isotopes in 
the framework of the IBA-2 model. 

TABLE 6 

E0 mat r ix  e lements  

Nucleus  Trans i t ion  
p(EO) 

exp th  

lSSOs 02 ~ 0 ?  2 . 2 x 1 0  2 

2 + 27 +0.8 x 10 2 (2.2 ~.~) 

19OOs 2+ 27 +1.5 x 10 -2 (2.5 4 .0  
- ( 7  + 1 5 )  x l O  3 

192pt 2-+ --* 2 7 (1 .6+1 .4 )  x 10-2 

(1 +~o) x l 0  3 

( 1 . 7 + 0 . 5 ) x 1 0  2 

194pt 2-+ --* 2? (10 .9+6 .6 )  x 10 -3 

196pt 2-+ ~ 2? ( 5 . 6 + 7 )  x 10 2 

- ( 3 . 2 - +  1.1) x 10 2 

- ( 4  +]) x l0  3 

( 1 . 6 + 0 . 2 ) ×  10 -2 

(3.9-+0.7) x 10 2 

2.9 x 10 3 

2 . 8 x  10 -3 

8.2 x 10 3 

1.0 × 10 2 

13.1 x 10 -3 

1 .5x  10 -2 

Pa rame te r s  used in the ca lcu la t ion  are:  

flow = 18x  10-3  fm2, flon = - 3 6 x  10-3 fm2, Ro 2 = 50 fm2. 

The  exper imen ta l  d a t a  are  t aken  f rom refs. 53, 54). 
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The main part of the hamiltonian which determines the excitation energies of the 
low-lying states consists of two terms: (i) the single d-boson energy, e, and (ii) the 
strength and shape of the quadrupole-quadrupole interaction between neutron and 
proton bosons (determined by the parameters ~c, Xv and Z~). Since in a isotopic chain 
Z~ is kept constant and the parameters e and ~c vary very little the characteristic 
changes in one series of isotopes are described mainly by the variation of only one 
parameter, Xv. (Vice versa in isotone direction, where Xv is constant, the trend can 
be reproduced by the variation of X,.) To obtain quantitative agreement with experi- 
ment it was found necessary to introduce also an interaction between neutron d- 

bosons. 
One of the main advantages of the present approach over other calculations is 

its simplicity; although in the present investigation we have restricted ourselves to 
a description of nuclei with neutron number N > 108 the simple structure of the 
hamiltonian enables one to easily extend the calculations to nuclei further away 
from the closed shells. As an illustration we show in fig. 18 the predicted energy 
spectra of 16s- 196pt isotopes throughout  the N = 82-126 neutron shell. The param- 

eters used in calculating the lighter Pt isotopes were obtained from a simple extra- 
polation combined with some information obtained from fits to nuclei in the Sm, 
Gd region. 

Finally we discuss some of the points on which the present results differ from the 
results of other calculations. First, compared to the calculation in the IBA-1 

Pt-isotopes ! 
i ~ O+ 
! • 2 + 

o 4 + 

2 0 -  

~ I . 5 -  

LO 

0,5 
tx ÷ 

6 i  i 

2 
! 

I I II , * 2 2  

-! 
÷ 

I I I I I L 
816 914 102 II10 1118 

Neu~'ron number 
Fig. 18. Comparison between calculated and experimental energy levels in 16s-196pt. The parameter 

set is given in table 7. The experimental values are taken from ref. 18). 
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TABLE 7 

Extrapolated parameter  set for Pt isotopes (in MeV) 

Nucleus ~: • 7.,. 7., Co, C2, 

184Pt 0.58 -0 .135  - 0 . 3 0  - 0 . 8 0  - 0 . 2 5  0.08 
ls2pt - 0 . 1 2 5  - 0 . 2 0  - 0 . 2 5  - 0 . 0 4  
~s°pt - 0 . 115  - 0 . 4 0  - 0 . 2 0  0.03 
17spt -0 .11  - 0 . 5 0  - 0 . 1 5  0.00 
176pt -0 .11  - 0 . 5 0  - 0 . 1 0  0.00 
174Pt -0 .11  - 0 . 8 0  0.00 0.00 
172pt -0 .11  - I . 1 0  0.00 0.00 
17°pt -0 .11  - 1 . 1 0  0.00 0.00 
168Pt -0 .11  - 1 . 0 0  0.00 0.00 

C~ ~-~ ~ - ~3 

0.00 0.04 0.10 

approach it is found that (i) the energy levels agree better with experiment, especially 
in the 0(6) limit; (ii) the excellent agreement between experimental E2 branching 
ratios and selection rules and the IBA-1 predictions persists also in IBA-2; (iii) the 
IBA-2 approach is capable of explaining the observed non-vanishing static quad- 
rupole moments of the 2 7 states (although the calculated values in the Pt isotopes 
are too small). Turning to other systematic calculations in the same region [those 
of Kumar and Baranger s) in terms of the pairing model plus quadrupole model, 
and those of Tamura et al. 3,34) using the boson expansion method] we find that 
all calculations have in common that the excitation energy of the 3~ states (and to 
a lesser extent the 2~- state) in the heavier Pt isotopes is predicted too high in com- 
parison with experiment. Although in the present case this discrepancy is a factor 
of two smaller than in the other calculations it might suggest that degrees of freedom 
other than of the quadrupole type are present. 

Concerning E2 branching ratios we find that in all calculations the overall trend 
is reproduced reasonably well; a noticeable difference is that in the present case the 
decay pattern of the 0 3 states in t92,194, 196pt is described much better than in the 
calculation of ref. s). There is also a characteristic difference between the predictions 
of the various models that can be traced back to the requirement of boson number 
conservation in IBA, namely the occurrence of cut-off effects in B(E2) values with 
increasing angular momentum. More accurate experimental information is needed 
to test this prediction. 

The authors are grateful to Prof. F. Iachello for his stimulating interest. 
This work has been performed as part of the research program of the "Stichting 
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