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INTRODUCTION
This compilation contains mostly unpublished work regarding a class of periodic,
reconfigurable architectures that are believed to have great potential for nano- and/or
molecular-scale systems. These reconfigurable cellular arrays (RCAs5) are mot really
cellular automata (CA) by some definitions, since they are not necessarily homogeneous
in their state transition matrices and they are directed (feed— forward) networks. They are,
in fact, inspired by CA and ﬁeid programmable gate array (FPGA) approaches. It is
believed they offer one possible approach to molecular circuits in particular, since it is
hoped that the repetitive sites might one day be realized as a self-assembled arrangement
of complex molecular "nano-blocks" that are, for the most part, identical.
Far from a complete work, this report may well raise more questions than it
answers, whether on a complete implementation of a particular version of a RCA
machine, or on the effectiveness of the architecture with increasing scale, which is a
fundamental concern. Instead, the report is a snapshot, intended to chronicle some
thoughts on problém of architectures that might be built on a molecular scale, with many
stated and unstated opportunities for future exploration. Some of those questions are
being addressed in the continuing work at AFRL, perhaps the subject of future follow-on

reports.




Molecular Field Programmable Gate Array (August 1998, I written May 1998) This architecture is
comprised of a large planar (x, y) array of identical building blocks that each implement a single
universal, three-input Boolean look-up table (LUT). LUTs are a well-known construct to the designers of
VLSI field programmable gate arrays (FPGAs). The LUT is designed to implement any possible function
of three Boolean input variables and can be emulated by a eight-bit memory (static flip-flop circuits) that
is programmed serially during initialization. By using the three Boolean variables as the inputs of a 8-
input multiplexer (built of molecular scale AND, OR, and NOT gates), exactly one bit of the 8-bit pattern
is selected. Since all possible input variations are covered by exactly one output, which can be arbitrarily
defined, this LUT universally implements any of the 256 possible Boolean functions of three inputs.
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It is important to understand the power and flexibility of the LUT, as it will enable the construction of a
universal computing fabric. A simple k-map representation of three Boolean input variables reveals how
eight bits can represent a three-input Boolean function. In the simple example below, the Boolean
function f= ABC’ + ABC + A’BC = AB + BC can be represented by the juxtapositional representation
of eight binary digits (e.g., 01001100, 11111101, etc.) where each digit represents the functional outcome
of a particular point in “Boolean space”. The eight bits, which completely specify any conceivable 3-
input Boolean function (inputs A, B, and C), can also be represented in decimal. In this example,
f(A,B,C)=2+25+2"=200, which unambiguously specifies f(A,B,C)=AB+BC.

Other example Boolean functions are shown in the next figure. Not only can traditional functions
implemented, but the LUT can be used to emulate wires. For example to connect input A to the output f,
one needs only specify the behavior f(a,b,c)=A=#170. This latter feature is essential to the construction
of homogeneous logic arrays that can compute more complex functions.
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An important and novel feature of the proposed LUT-based computer architecture is in the connection
topology, which is based on studies by Wolfram in the propagation of one-dimensional cellular
automata.! Here, we extend the concept to circuit connection topologies, resulting in a homogeneous
reconfigurable gate array (see below). The tremendous density of molecular electronics will allow the
implementation of arbitrary combinational digital circuits by using standard methods in multilevel logic
synthesis and technology mapping, in which complex functions are decomposed into logic building
blocks, such as LUTs. In the case field programmable gate arrays, separate algorithms are used to
determine placement of the blocks and routing of signals between inputs and outputs of blocks. In the
proposed architecture, routing is indistinguishable from logic, which affords new dimensions of
flexibility. As this architecture was conceived of for molecular level implementation, the relatively
inefficiency of using logic for routing is potentially more than compensated for by the sheer density of
LUTs that could be implemented. A number of potentially substantial advantages of such an architecture
be indicated:

(1) Itis an easily iterated structure that can be mass created and extended to very large architectures.
Even if Pentiums could be built on a nano-scale, the placement and routing of large numbers of
special cells in a fixed arrangement may have the consequences of intractability on various scales,
including fabrication and computer-aided-design.




Iterable array based on 3-input lookup tables. INustrating flow of programrhing bitstream.

(2) Testability is in principle very simple. It will probably be possible to achieve 100% fault coverage by
using the homogeneous network itself to perform testing. Special diagnostic programs can be
developed to exercise every wire and node of a complex network, with very little guesswork.
Contrast this case with nanoscale, full-custom logic, where even with fault-grading and coverage at
99.99%, an unacceptably high number of failures could go undetected.

(3) The architecture could be very forgiving of faults. Similar to hard disk drives, bad locations could be
identified and fed to the logic decomposition and technology mapping software. Algorithms and
heuristics for mapping around defective cells in FPGAs could be readily adapted, creating a system
that could in most cases implement any conceivable function despite a number of failed regions.

(4) Timing within a block of homogeneously interconnected LUTs is absolutely deterministic since
every input signal must pass through the same number of LUTs in order to reach an output. Even
when side-coupling is exploited, the number of LUTs involved in a particular computation is known
and timing can be establish. This feature is using in timing analysis of very complex designs.

Extending the general computation fabric involves combining blocks of LUTs with “user” storage and
providing input/output terminals. One example of such an arrangement is shown below. In this case, two
logic array blocks contain m x n LUTs be interfaced through a 1-D array of molecular flip-flops. This
arrangement corresponds to the general representation of a combination-sequential digital system (shown
right). The flip-flop array exploits side-coupling to provide state preservation, as needed to synthesize
finite state machines. In this model all 1-D flip-flops are synchronized with a common clock, limited in
frequency only by the total delay represented by 2m flip-flops. '
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Many other arrangements of LUTs and flip-flops are posSible. The next figure only begins to hint at the
possibilities.
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Input / output terminals to the systém would be interfaced to the LUT blocks. The sheer density of LUT
columns precludes attaching a wire at every LUT. As such, pads would be attached at a pitch dimension

~ "cone of influence"
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p, selected according to the packaging technology used for
the overall system (e.g., 70um for wire bonds, etc.). The
inability to place contacts at every LUT column creates a
“dead zone” situation, in which the inputs or outputs on
particular LUTSs are inaccessible. This is due to the fact that
in the proposed architecture, each LUT can only connect to
the first three nearest neighbors of the preceding row. As
such, a “cone of influence” defines the range of interactions
possible with LUT arrays from particular points. _
Algorithmically, these effects are of little consequence to
technology mapping software, and it may be easier in the
molecular assembly process to simply build those regions in
and ignore them in the ensuing implementation of the
reconfigurable processing system.

! Wolfram, Stephen. Cellular Automata and Complexity. Addison-Wesley, New York (1994).




How the Molecular Architecture’ Achieves Fault Tolerance

Fault Tolerance. The fault tolerance of the proposed molecular field programmable gate array architecture

is easily shown to be a by-product of its regular structure when combined with appropriate design '

methodologies and Boolean synthesis heuristics. In the simple example in Figure 1, a set of five input -
variable (a, b, ¢, d, and e) are used to generate four functions (h1, h2, h3, and h4). Given the likelihood of

many single-point fabrication defects, it is important that architectures for nanoscale electronics be robust

enough to deal with random defects.

Figure 1. Example logic section (defectfree).

The example logic functions shown perform a variety of Boolean operations on variable (a-¢) and
generate intermediate results, and eventual generate final functions (h1-h4). To illustrate a potentially
likely random defect, Figure 2 shows the impact of a defective LUT in the second row. Based on the cone
of influence, most if not all functions dependent on the defective cell are also defective, and the
consequences to a non-reconfigurable design would be potentially disastrous.
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Figure 2. Single random defect.
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Fortunately, the ability to reconfigure a vast sea of logic/routing resources makes it possible to readily
recover from such defects. An example re-mapping is shown in Figure 3. In this case, the defect is
circumlocuted and any ill effects can be safely ignored.

V<V
Jolololok:

Figure 3. Circumlocution of single defect.

The key to surviving fault tolerant conditions in such molecular FPGA would be based on several critical
requirements:

(1) large pool of reconfigurable (re -defineable) resources;

(2) arrangement of these resources to permit sufficient generality (multiple mappings of same functions);
(3) process to formally identify defects (functional verification);

(4) asetrobust Boolean synthesis heuristics to accommodate defects;

The first requirement is met by the present architecture, which is presently the densest proposed
reconfigurable system fabric.

The second requirement refers to design methodologies based on the proposed universal computation. It
will be necessary to provide “wiggle room” in the design space spanned by the present architecture to
permit transparent re-mapping of functions, similar to that shown in Figure 3. Such constraints are met
through design disciplines exercised in the course of utilizing the proposed device. It is envisioned as
previously described that an entire reconfigurable “chip” would contain many functional sub-domains
contain vast tilings of the proposed LUT block structure. Synthesis (in the Boolean sense) would be a
hierarchical procedure whereby any subset of the overall system would be partitioned into a given LUT
block structure. If the partition is too tightly constrained (resources are too nearly fully prescribed), then a
number of point defects would “break” the synthesis at that level, forcing a larger scale backtracking (re -
allocation of functional subsets to LUT blocks). In this sense, the lack of “wiggle room” results in a more
protracted synthesis, whereby even higher level allocations would need to be re-visited. Part of the
architectural research to be carried out in this program will be to establish such “wiggle room”
requirements and the effects of functional congestion on synthesis performance.

The third requirement for fault tolerance is the ability to identify defects. Fortunately, the same regular
structure lends itself very well to formal verification of device, block, and subsystem functionality through
the development of test programmations. As previously suggested, such a capability can be used to
establish 100% functional verification.




Finally, the Boolean synthesis system must be “geared” to handle (circumlocute) a finite number of
defective LUTs and/or LUT blocks. The realization of complex digital functions from specifications, the
common mode of development for complex ASICs, requires the nested solution of many non-deterministic
polynomial time (NP-complete) problems in order to arrive at viable solutions in a given medium, whether
fixed silicon gate arrays or reconfigurable gate arrays. The process of realization, referred to as Boolean
synthesis, generally assumes fully functional resources in the medium, which is probably not a realistic
assumption for molecular scale devices. It is necessary, therefore, to consider robust synthesis procedures,
whereby a number of known defects, particular to individual devices (identified by a pre-test process), are
provided as inputs to the specification procedure, just as the specifications themselves are provided. This
situation is analogous to the bad block tables associated with hard disk drives in earlier days of personal
computing. Given the bad block map, a hard drive could be formatted in such a way as to ignore defects.
We indicate here that a similar approach (in principle) can be applied to achieve maximum yield in
molecular devices. It is in fact these fault-tolerant characteristics that may make this very type of
architecture the most tractable proposed for nanoscale / molecular scale computational electronics.

! Lyke, J. " An Architecture for Molecular Computers", white paper, May 1998.




PROGRESS REPORT INPUTS ON MOLECULAR ELECTRONICS ARCHITECTURES |
James Lyke, September 1999, for the DARPA/ DSO Moletronics Program

One of the most important problems in the design of molecular electronics that must be considered
concurrently with the design of basic fundamental building blocks is the architecture that can effectively
harness extremely high numbers of logic devices and still meet the constraints of molecular
implementation. Ideally, such molecular architectures will be compatible with present-day implementation
concepts, or at least they should provide a capability to transition gradual from relatively unconstrained
architectures to future ones. This point is very important, as it is clear that even modern semiconductor
fabrication processes struggle to keep up with the ideas of architectures without constraints.

This section of the report discusses: (1) the present architecture trends, (2) base constraints in molecular
implementation, and (3) a reconfigurable molecularly-scale-able architecture.

1. Present architecture trends.

Evidence that the present trends in VLSI design may not be sustainable is illustrated in Figure 1, which
compares the interconnection density of circuits from typical architectures in processes from 1986 and

2005 (projected from the Semiconductor Industry Association) roadmap. Given the present trends, a very
large scale integration (VLSI) 0.1 micron integrated circuit might require 10 kilometers of interconnection
for each square centimeter of active circuitry. It is on this basis important to understand that the boundary
conditions underpinning the current architectural foundations must be re-assessed. These underpinnings
include input/output terminal relationships of circuitry, hierarchy, dimensionality, and the descriptive
complexity of circuitry.

Figure 1. Interconnection densities in circa 1986 and circa 2005. (left) 1.0 micron process, circa 1986.
(right) 0.1 micron process, circa 2005.

The input/output terminal relationship to logic in particular and sub-modules in general is captured by the
empirical relationship referred to as Rent’s rule. Rent’s rule is of the form: T=A*G"p, where T is the
number of terminals, A is a multiplicative constant, G is the number of sub-elements (i.e. logic gates), and
pis an exponent (Rent’s exponent). For VLSI circuitry, it has been shown that for most complex
architectures, p is usually in the range 0.6 < p < 0.75, with 0.67 being approximately representative of a
microprocessor. In circuit architectures of very high regularity such as memories or systolic arrays, the
Rent’s exponent is lower, and for random logic, Rent’s rule is much higher. Rent’s rule can therefore be
generally ascribed as a property of architecture. This is very well understood in the high-performance
integrated circuit community, particularly by the designers of field programmable gate arrays (FPGAs).
FPGAs are complex ICs used to implement seemingly random varieties of digital circuitry. It is the goal of
FPGAs in fact, to be completely general, to the point of being able to implement any conceivable digital
design. It has, however, been observed that any circuitry, including FPGAs, have a Rent’s rule property.
Since FPGAs are circuits that try to implement other circuits, then the FPGA, as an implementation
medium, has a Rent’s rule “supply”. The circuits that one wants to implement, of course, have a Rent’s
rule property, or in other words, a Rent’s rule “demand”. It has been suggested! that the “resources” of
FPGAs are optimally utilized only when the supply and demand match. '




Hierarchy appears to play an important role that is still only qualitatively understood. For example, in
graph-theoretic representations of architectures, it has been shown that no Rent’s rule exists for random
graphs. It appears that the conscious act of design, by humans, leads to the manifestation of Rent’s rule.
Since humans have the ability to accommodate a very limited span of control, they typically partition
complex designs in a modular sense, iteratively until fundamental building blocks are encountered. The
resulting iterative decomposition imposes a structure to architectures.

Dimensionality plays a very important role in architectures, particularly in planar integrated circuits.
Spatial constraints are an obvious driver to performance, and the tile-like juxtaposition of circuit elements
into the floor plan of integrated circuits creates a sort of modulation effect to Rent’s rule and to hierarchy.
The inability to adequately wire together integrated circuits is partly a consequence of planar (2-D)
restrictions. Since elements at a given level of hierarchy are treated in isolation, the interference effect of
sub-clements, which compete for the same wiring real estate, is not typically considered in architectural
design. At some point, when designs become un-routable in two dimensions, architectures must in effect
be comprised in some sense to be implemented, which results in a corresponding decrease in the Rent’s
coefficient. If circuitry were built in three-dimensions, it is expected that the Rent’s rule would change, but
even a third dimension would eventually experience a similar bottleneck. Inspiration of non-physical
higher-dimensionalities has inspired the implementation of novel architectures such as hypercubes and
higher dimensional cellular automata and neural networks. Implementations of such architectures are
possible only in simulation or by “flattening” lirnited instances into 2-D topologies.

One issue with any medium capable of implementing the building blocks of architectures might be referred
to as “expressive range”. If a proposed universal logic gate has three inputs and can implement any
combination of up to three, two-input functions, then it will fall short when an implementation of five, two-
input functions is required. The descriptive complexity. or Kolmogorov complexity of circuitry has an
obvious impact upon its implementation. High descriptive complexities result in dense internal structures
in architectural blocks, which will have higher wiring demand. In hierarchical implementations where
internal complexity is high but terminal count is low, Rent’s rule does not hold true at the system level, but
does hold when recursively applied as the system is decomposed into subsystems and elements. Examples
of low complexity functions are AND gates and parity functions. Majority gates, which are a function of
the Hamming weight of the inputs, are an example of high-complexity functions.

2. Base constraints on molecular implementations

Three immediately obvious constraints have been identified for molecular implementations: (1) low
interconnection supply; (2) no tractable lithography; and (3) imperfect medium (defects). Other constraints
include thermal handling capability, long range structural stability in use environments (reliability), and
packaging.

3. A Reconfigurable cellular automata field programmable gate array architecture for molecular
electronics-

The baseline tile of LUTSs proposed for this program is illustrated in Figure 2. It is based on a 1-D cellular
automaton with three-neighborhood. As one might infer, a one-dimensional structure could be
implemented as a single row, provided that the computational results are looped back into those structures.
This case is shown in Figure 3a, where each cell computes new results based on the local neighborhood
about it. If instead the ties are broken (Figure 3b) and propagated forward (Figure 3), a structure is
produced as shown in Figure 2." This architecture is interpreted as a 1-D cellular automata structure in
which each time step is represented by the next row in the tile.

The architecture is powerful for realizing many useful general and specific computation structures for two
reasons: (1) each cell, a three-input LUT (3LUT), can be individual tailored and repetitively re-
programmed; (2) each cell may be programmed distinctly with different behaviors. A more complete tile
schematic is shown in Figure 4, which shows the previously repressed details on connectivity required for
programming each tile.  The mechanism is commonly understood and used in traditional VLSI FPGA
architectures and is referred to as a bitstream configuration process. Briefly, each 3LUT contains a shift
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register that is loaded with a binary pattern (personality or “rule”). By cascading all 3LUTs in a tile, a
single long bitstream (contains 3*m*n bits for a tile of m rows and n columns) configures each 3ALUT in a

tile.

Figure 2. Three-input look-up table (3LUT) based tile, a reconfigurable gate array architecture based on
cellular automata.

Figure 3. Conversion of 1-D cellular automata to basis for Figure 2 architecture. (left) 1-D binary cellular
automat. (center) Removal of feedback, conversion to feedforward. (right) Basic cell for 3LUT tile.

Figure 4. Details showing the configuration bitstream to program each 3LUT in a tile.

Operation of the 3LUT may be gleaned from Figure 5. Each combination of three inputs (A,B, and C)
select a particular flip-flop (memory) cell in the shift register structure. The rectangular blocks in Figure 5
represent the circuitry required to effect the storage of a single bit of a shift register chain (referred to as a
shift register cell). Since these cells in the shift register are altered by reloading, any of the 2/(23)=256
possible binary functions of three inputs can be selectively and directly implemented. Many simple shift
registers employ a non-overlapping two-phase clock to advance the bitstream through the register. The
bitstream enters a shift-in terminal and exits through a shift out terminal. A summary of the terminals

" required to implement a 3-LUT follows:
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2?7 Function inputs (3): A, B, and C are binary inputs from the output of another LUT or from an outside
signal source (for LUTSs on the boundaries of a tile).

7?7 Function outputs (3): Three identical (shorted) terminals output the function of inputs, presumably to
other LUTs or to an outside sink (for LUTSs on the boundaries of a tile).

?? Configuration clocks (4): Two distinct clocks, phil and phi2, are used explicitly to control
configuration of the LUTs. Based on perceived structure of the molecular nano-modules, the proposed
LUT configuration will accept and transmit phil and phi2 from a source, and transmit the identical
signals, presumably to other LUTs. It is important to note that phil and ph2 are global signals with
respect to a tile and must be synchronized by all “members” of the long shift chain in order to advance.
It is important and obvious that the clocks are active only during configuration, and these clocks are
suspended during normal operation

7?7 Configuration signals (2): A shift in and shift out signal is required for the purposes of Ioadmg the
pattern for a particular LUT.

7?7 Power (2): It is assumed that a single voltage is required for the LUT.

Shitin

NAB.C)

Figure 5. More detailed view of 3LUT.

In summary, it is estimated that twelve terminals are required, and four are redundant. The redundancies
are anticipated as necessary for the construction of “correct” nanomo dules that could conceivably self
assemble in some correct manner. The notion of such a self assembly sequence is depicted with a
simplified representation of 3LUTs in Figure 6. The role of redundant terminals is to provide an adequate
number of attachment points. As a better understanding of the specific molecular construction is gained,
the need (or lack of need) for such terminal redundancy will be established.

Simple representations of the shift register and LUT have developed to provide some bases for possible
alternative implementations. If one uses two-terminal gates, a possible representation of a single shift
register cell (the contents of the boxes in Figure 5) is shown in Figure 6. The Figure 6 representation is
based on the existence of OR and NOT gates, and demonstrates a fundamental need for regenerative logic
in molecular implementations that follow a gate-based paradigm. The Figure 6 structure is simply a
cascaded, clocked master-slave “SR” type flip-flop, and the regeneration is needed to preserve state, A
more generic form of the shift register cell is shown in Figure 7 based on cross-coupled NOT gates and
unspecified isolation elements. Figure 7a depicts a non-specific schematic used in VLSI implementations.
Once again, the role of regeneration is clearly indicated in the buffered storage required in normal shift
registers. Unlike the Figure 6 shift register cell, the Figure 7a version relies on isolation elements to
maintain integrity of the contents of each cross-coupled NOT section. The isolation elements could be
formed from molecular devices if they can be developed with the ability to gate conduction. Of course, in
VLSI design, the isolation elements are implemented with MOSFET devices, as shown in Figure 7b.




Shift Shift
in out

Phi1 Phi1
Figure 6. Version of shift register based on SR flip -flop that can be implemented with two -terminal OR
and NOT gates.

In VLSI implementations, cross-coupled NOT gates are sometimes employed asymmetrically. Figure 7¢
depicts “weak inverters”, which are designed to be “strong” enough to maintain regenerative storage but
when the storage value is changed, the source influence is dominant. Some VLSI designs, on the other
hand, employ symmetry when bi-directional operation is desired a shift register design.

Figure 7. Shift register cell imp lementations. (a) Generic representation. (b) VLSI based,
using MOSFETs. (c) Notion of “weak” inverters.

A final, complete schematic for a 3LUT is shown (Figure 8) in a form that can be directly simulated or used
in designs. This schematic was generatéd in the Altera MaxPlus II graphical entry environment and was
compiled to verify structural correctness. In this case, the shift registers are implemented as “D”-type flip-
flops.

Notional self-assembly of nanomodules to form a tile of 3LUTs. It is expected that a number of LUTs
are realized as individual molecules in a chemical synthesis procedure. The nanomodules (about 100
nanometers maximum in physical dimension) might be randomly oriented in a solution. The concept of
self-assembly in a grossly simplistic sense involves promoting 4 bonding affinity between certain termini
on one nanomodule to desired terminal sites on other nanomodules. A depiction of this sequence is shown
in Figure 9. The desired objective in this depiction would be a tiled arrangement of LUTs, corresponding
to the Figure 2 architecture. '

Some preliminary results in application of LUT tiles to routing problems.

The 3LUT tiles have interesting properties, as well as limitations, when considered as a medium for
implementing architectural designs. Since the 3LUT tiles are a two-dimensional field of extremely simple
computers, complex computations are implemented by decomposition and mapping problems into forms
conducive to the constraints of 3LUT tiles. Obviously, among the possible Boolean functions of three-
input variables, in addition to traditional logic functions such as AND, OR, XOR, are the wiring functions
in which any one of the inputs is selected and simply passed to the output. When only the wiring functions
are considered, such as f=A, f=B, and f=C, then the 3LUT tile can be regarded as a wiring manifold. Asa
wiring manifold, traditional methods used in VLSI gate array design can be used. Examination of the
routing characteristics of the 3LUT tile is an important precursor to understanding how to apply the 3LUT
to general logic and eventually full sequential digital circuit design.

The case of routing with virtual wires is known to correspond to graph-theoretic treatments. In particular,
establishing the optimal connection paths between a set of points is referred to as “forrest” of graph Steiner
trees. Finding a single optimal Steiner tree is a known non-deterministic polynomial time complete (NP-
complete) problem. For the 3LUT tile, the corresponding graph is directional. This is clearly shownin a
simple example for a small tile in Figure 10, which compares the tile schematic (Figure 10a) to a graph
representation (Figure 10b). Not surprisingly, the representations are very similar, but when expressed as a
graph, the LUT tile can be used as an input representation by existing computer-aided design tools.
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Figure 9. Notional depiction of self-assembly sequence of individual 3LUT nanomodules into a 3LUT tile.
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To provide some insights into routability, a simple software experiment was undertaken in converting tile
representations into graph representations and using an automated routing tool. The source example,
shown in Figure 11, illustrates a 10x10 LUT tile with lines depicting a desired input-to-output wiring
configuration (input nodes at the top, and output nodes at the bottom). When processed by a simple FPGA
greedy router developed for non-directional graphs, a connected pattern employing 3LUTs is produced
(Figurel1b). The net contains an incorrect assignment for the 3-5-c wires, which “orphans” the signal
input at node 5 (the signal cannot go backward from the node below 4 to the node for signal 3). The
routing error is rectified in this example by using a routing heuristic that accepts directed graphs, as shown
in Figurellc. Here, the node represented the merging of signal at inputs 3 and 5 is highlighted. This node
would correspond to the output of a 3LUT, which would implement a computation or resolution function of
the inputs (3 and 5), producing a result at node c.

Figure 10. Graph-theoretic representation of simple LUT tile. (left) 2x3 LUT tile. (right) Graph.

Further examination of the 3LUT may lead to the creation of a new type of Steiner tree problem. In the
simple examinations done to date, heuristics for graph problems were used, which are general to non-
physical networks. In layout design, other Steiner problem formulations are used, such a planar (two-
dimensional Euclidean) and rectilinear (two -dimension L1 norm) treatments that take into account the
physical constraints of those problems. Clearly, the regularity of the tile structure must give rise it seems to
some other type of Steiner tree problem, which may admit better solution heuristics.
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Figure 11. Routing example on 10 x 10 LUT tile graph. (a) Example routing problem. (b)
Incorrect implementation using undirected graph routing (note 3-5-c net). (c) One possible
correct solution.

Another finding of this preliminary work is that the 3LUT is likely the simplest cell design for this
architecture that may support the formation of general structures. This is clear due to the fact that whereas
it is possible to do virtual wire “crossings” with 3LUTs, it does not appear possible to do this with 2LUTs.
In the Figure 11 routing example, wire crossings are readily implemented, though the types of wire
crossings and propagation paths are limited. No successful experiments have been conducted in which
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even the simple results of Figure 11 can be produced with 2LUTs. If conclusive, the finding may be of
some importance, since it has generally been assumed that several two terminal gates are capable of
supporting universal computation (e.g., NAND, NOR gates). When, however, a regular array of universal
two-input Boolean functions are formed, such an array may be extremely restricted in terms of the types of
computations that can be performed. When the restriction of regularity is removed, then this statement is
not true. In other words, without wiring constraints, an infinite array of universal two-terminal logic gates
can universally implement any digital function.

On the other hand, many other tile arrangements can be formed using more complex LUTs. For example, a
4LUT can be used as the basis of a two-dimensional cellular automata definition and another molecular
architecture. The cones of influence may disappear in such a formulation, and a new architecture based on
4-LUTs would be capable of local feedback. With a 5-LUT, it is possible to formulate the basis of a
cellular automata that can be readily implemented in three physical dimensions. It is also possible to recast
the 3LUT tile by replacing each cell with a SLUT and extending the connections to the next two nearest
neighbors. This formulation is far superior to the 3LUT case, as it allow more sophisticated virtual wiring
functions with a much less restrictive “cone of influence” effect. Everything, of course, comes with a price.
A 4LUT is, for example, twice as complex as a 3LUT, and a SLUT is twice as complex as a 4LUT. Itis
possible to discuss these enhanced versions of the proposed architecture, but it is important to understand
more completely the range of use and limitations of the original 3LUT tile (Figure 2) first.

Benefits of present architecture for molecular implementations

The proposed architecture meets a set of constraints outlined previously for nanoscale implementations.
First, the architecture is low interconnection demand. It is a medium in which other architectures based on
logic and routing are implemented virtually by programming LUTs to perform logic and routing functions.
Second, the approach relies on chemical synthesis and self-assembly to create tiles. This avoids the need
for lithographic approaches , but due to the reconfigurable nature of architecture allows for delayed
definition of circuits that are in effect “soft-loaded” into the tile. This combination of features obviates the
need to pattern random and complex structures at a molecular level. Third, the architecture takes advantage
-of LUTs for the purposes of defect tolerance. Since any LUT can take on any function, then defective
zones in an LUT tile are potentially recoverable by ignoring the defective regions and remapping logic and
routing around them. '

Progress in developing a more complete architectural specification

While the 3LUT tile is an extremely fundamental and important driving theme of a molecular architecture,
it is not a complete architectural specification. An attempt to provide a more complete picture of a
prospective architecture is shown in Figure 12. The top-level architecture employs a number of 3LUT
tiles, juxtaposed through intercalating structures that provide data storage and signal transport, as well as
boundary structures, which provide input/output transitions. The tiles are based on a regular arrangement
of 3 LUTs in a two dimensional grid. Each LUT is repeatably reprogrammable after fabrication through a
configuration bitstream, which is propagated through each element in the tiled structure. The direction
arrows refer to the tile orientation. For example, the tile illustrated in Figure 2 is directed downward.
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Figure 12. More complete molecular field programmable gate array, illustrating other support structures.

Provisions of the Figure 12 top-level architecture include:

State preservation and feedback. In order to implement finite state machines and more generalized
circuitry, it is necessary to create signal feedback paths. In the Figure 12 architecture, feedback is provided
by assembling complete tiles such that: (1) each tile has a different direction of propagation, and (2) ifa
loop is formed by the tile arrangement. The Figure 12 architecture achieves its “loop” through four tiles,
each rotated by 90 degrees. Based on geometric considerations, this results in the need for nanomodules
that are equal in size in the two principle axes, and the tiles must be square (i.e., equal number of rows and
columns). It is possible to achieve feedback with only two tiles, as shown in Figure 13. The latter scheme
does not require the same degree of symmetry and may be more effective for certain designs.

register file (bit array)
gock —{ ITTTTT1I111]

m x n tilg of LUTS

3 n'ﬁtﬁ‘of LuTs

HEREEEEEEN clock
register file (bit array)

Figure 13. Simpler FPGA architecture, based on only two 3LUT tiles.

Global synchronization. To control the sequential behavior of the resulting implementation, it is
necessary to insert a synchronizing structure in the loop. This role is fulfilled by one or more linear (1-D)
flip-flop arrays. In the proposed top-level architecture, a number of clock generators, which must
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themselves be synchronized are employed to “register” all signals emanating from the various tiles.
Without this synchronization mechanis m, the loop performance of state machines would be path-
dependent, which could in fact be exploited in some advanced versions of this architecture. As suggested
in the diagram, the configuration bitstreams are also managed by the clock generators.

Input/ output. Signals to and from the entire system, the so-called “alligator clip” attachments, are
introduced at tile edges. As indicated in Figure 12, these signals may also be registered through flip-flops,
though this provision is not required. The considerations for the introduction of input and output signals
are manifold, not the least of which include the effects of the cones of influence and the pitch available in
electronic packaging assemblies. The “cones of influence” refer to the propagation limits imposed by the
signal path constraints in the 3LUT tiles. As shown in Figure 14, the cones of influence do not allow
effective utilization of all portions of tiles for input and output. The density of placement or wiring pitch
for signals from an external assembly approach (such as wire -bonding) also dictates a fundamental limit of
signal density injected into at least the outer tiles. Current wire-bonding pitch state-of-the-art is 50 microns
between conductors, and the likely limit of wire-bonding pitch by 2010 will be about 25 microns.

"cone of influence”

<
ad [#] o] pad
ad mxn LUT array ad
ad ad

) ol
~

"dead zones"
Figure 14. “Cones of influence” side effect of 3LUT.

Device density remarks. The disparity between terminal density and LUT density are staggering.
Assuming 100 nanometer diameter nano-modules and the requirement for square LUTs, an LUT that
directly interfaces to the “outside world” and aligns directly to ten, 25 micron bond pads would contain
2500 x 2500 = 6.25 million 3LUTs in a single tile! If the entire perimeter of each of four tiles are utilized,
the resulting device would have a total dimension of 0.5mm per side, contain 80 signals and 25 million,
3LUTs. A simplistic extrapolation indicates a 4000 terminal device correlating to a 1 cm”2 molecular
integrated circuit with 2500 similar tiles, representing a total of 63 billion 3LUTs in a 2-D “film”.

Ultimate extrapolations to a 3-D architecture based on these projections can be attempted. First, it is
necessary to understand that the 3LUT template may be inadequate. It is believed that the SLUT template
is the correct correlation for the simplest effective three-dimensional implementation. The SLUT is
minimally four times as complex as a 3LUT. Assuming a nano-module has four times the volume, a three-
dimensional tile would contain 3.9E15 5LUTs in a cubic centimeter. De-rating the estimate by an order of
magnitude suggests 400 trillion SLUTSs per cubic centimeter. Such projections are grossly simplistic, as
many practical issues have been overlooked.

! DeHon, A. Reconfiguable Architectures for General-Purpose Computing, Al Technical Report 1586, MIT Atrtificial
Intelligence Laboratory, 545 Technology Sq., Cambridge, MA, October 1996.
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Abstract

_ The evolution of integrated circuits has shown a steady and dramatic decrease in the size
of individual computational elements, and a corresponding growth in device density. As
we approach the physical limits of litho graphy and semiconductor devices, we will need
new technologies, such as molecular electronics, to continue the trend toward
miniaturization. These devices will require a new design paradigm, with reduced
interconnects, and post- fabrication configuration. This paper describes an architecture for
harnessing nanometer scale electronics, based on cellular automata (CA). Associated
structures are extended to form a field programmable gate array, which may yield new
insights into both CA and VLSI applications, and provide a model for designing
molecular computing systems.

| Introduction

It is projected that when integrated circuit (IC) feature sizes approach 0.1 micron, over
ten kilometers of wiring will be necessary to interconnect the transistors contained in one
square centimeter. Already, interconnections dominate volumetric content. The trend in
interconnection density for computational architectures is captured by the well-known
Rent’s relationship:

T ? kG?
where T is the number of input/output terminals, & 1s a constant, G is the number of logic
gates, and p is the Rent’s exponent [1]. Thus, the number of signals crossing device
boundaries is a strong function of the number of gates, resulting in wiring congestion and
growth in the average interconnection length. In “gigascale” designs (G > 10%) with a
Rent’s exponent p > 0.5, the maximum system speed actually decreases due to increased
average interconnection length [2]. In today’s complex designs, the average Rent’s
exponent is in the range of 0.65 <p < 0.75. Without some fundamental shift in
architectures, further advancement in complex ICs may be stopped by interconnection
problems long before we reach the limits of lithography or device physics.

The dramatic progress in microelectronics density is projected to continue for at least the
next 12-15 years. After that, devices may be realized as individual molecules, and circuits
could be self-assembled through chemical synthesis. Though the theoretical densities of
electronics at this scale are high (e.g., >> 108 devices / cc), significant barriers exist:

1. No effective lithographic technologies have been defined for nanometer-scale
devices.

19




presented at 8th NASA / IEEE Symposium on VLSI Design, 20-21 October 1999, Albuquerque New Mexico.

2. Interconnection between devices appears to be a fundamentally limiting factor as
devices get smaller and VLSI circuits denser.

3. The likelihood of defects will not disappear, but will probably grow at nanometer
scales.

This paper describes a prospective architecture, inspired by one-dimensional cellular
automata (CA), that may offer a solution to these problems. By spatially unraveling
temporal CA architectures, it is possible to form periodic structures with low
interconnection demand that can be assembled thorough chemical synthesis. Through
cell-specific behaviors, a wide class of Boolean functions can be implemented. This
feature, combined with ability to introduce linear register structures, provides a
framework capable of directly realizing finite state machines, thus establishing. the basis
of a universal computing fabric.

1I. Cellular Automata

The concepts of simple CAs are well established and rigorously defined [3,4]. A cellular
automata (CA) structure can be thought of as a #n-dimensional lattice of one or more point
sites (cells). Each site of a CA structure possesses a value, which for the purposes of this
paper is either {0} or {1} (i.e., a binary CA). The site values are discrete in time, and the
values of all sites change at the same time. The values of each site or cell are updated
through a state transition function, or global rule, which depends only on values of cells
in a certain local neighborhood, including the cell in question. Figure 1 shows a one-
dimensional (1-D) binary CA of neighborhood r=3. The transition from present state to

CA site behavior
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Figure 1. Example of transition function for 1-D cellular automata with
neighborhood r=3. Resulting global rule is a number formed by juxtaposing the

output values of neighborhoods in lexicographically-decreasing order:
[01011010] = #90.

next state is shown as a function of neighborhood. Since only 2* possible combinations
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exist, we can specify the global rule as a decreasing lexicographic ordering of
neighborhoods into a binary numeral representation. This simply maps each of the 2% =
256 possible neighborhood combinations uniquely to a particular state transition function.
Since all cells have the same global rule, we can describe the behavior of the structure by

a single number.

Although simple enough to study rigorously, CA structures can produce complex
behaviors. The time evolution of a 79-site 1-D CA is shown in Figure 2. By simply
changing the rule number associated with a structure, it is possible to produce four
general classes of behaviors: (1) simple (quickly quenched or stable); (2) oscillatory; (3)
self-similar, and (4) chaotic-complex. The two-dimensional patterns in Figure 2a
represent a time evolution of CA values: columns represent the values at a particular site,
and rows represent the site value at particular time steps (time advancing downward).
This example illustrates class 3, self-similarity. The pattern is compared to a natural
occurrence (Figure 2b), which suggests the ability of CA to directly model certain
physical phenomena [4].

(@ (b)

Figure 2. Self-similarity behavioral manifestation in 1-D binary cellular automata.
(a) Time evolution of CA with 79 sites, global rule #150, having a single “1” seed
initial condition; (b) natural occurrence of self-similarity in patterns found on

seashell [4].

CA structures have an initial value of each site at time zero; by virtue of the rule
definition, the cell values are unambiguously defined for all future values of time. In
trivial CA rules, such as #0, any initial conditions placed on a CA structure are quenched,
in this case after a single time step. In other cases, other CA rules are very sensitive to
initial conditions. An important set of CA rules, referred to as quiescent, are those that
produce a zero value for all time when the initial conditions are zero for the associated
sites. Some CA researchers focus only on quiescent CA structures based on desires to
correlate behavior with physical phenomena. In the proposed association with VLSI,
however, such restrictions are not considered, as they severely limit implementation
possibilities (for example, only 32 of 255 possible rules for 3-neighborhood 1-D binary
CAs are quiescent).
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Boundary conditions. We must
YT decide how to treat the nodes at the
tg: gmi‘r"“ o ﬁ_: w ends of the structure, indicated by the
question marks in Figure 3, top.
These nodes can be null terminated,

. {;‘““ "“\ "‘"“*} Q;“‘"‘* : or forced to zero, which produces one
I S i T e S set of behaviors (Figure 3, middle.
Lﬁj}@}ﬂ_ﬁﬂ \;‘:?:j\#jlg}:_‘_ji Alternatively, We( cz%nur wrap the )
= 1 ¢ oo - terminal nodes around to produce a
. ®) —— . circular structure (Figure 3, bottom).
a)e)ols |
ﬁnmwmm\;’ : The state of all or part of a CA
e 4 structure and its evolution in time can
. be considered by encoding the values
(©) of a vector of sites as a single
Figure 3: Boundary conditions for CA structures. Top: number. Not to be confused with the
dangling terminals. Middle: null termination. Bottom: rule number, the state value of a »n-
circular termination. : site CA structure (which spans the

range from 0 to'2"-1) is not a

specification of behavior, but rather

an observation of evolved behavior.
In considering the evolution of state in CAs, two general possibilities exist: reversible and
irreversible. Both possibilities are demonstrated in Figure 4 using a single four-site CA
structure (1-D, 3-neighborhood). The irreversible case is demonstrated by a circularly
terminated structure with rule #90. By encoding the values of the four cells from left to
right into a binary number, a state is defined. The evolution of states is shown as a
directed graph (Figure 4a), in which the next state value is defined based on the encoding
of evolved values that occur at the respective CA sites. For every non-trivial initial
condition, the state values merge into common values. For example, initial state values
of 1 [0001], 4 [0100], 11 [1011], and 14 [1110] evolve to 10 [1010] in a single time step
and then to 0 [0000] after an additional time step. Without prior knowledge, it is
impossible from the state value of 10 to establish which of the four possible states led to
this value. The ability to reconstruct state history is then defined as irreversibility in this
context. By simply changing the boundary conditions from circular termination to null
termination, a new state evolution pattern emerges (Figure 4b). In this case, previous
state values of the CA structure can be determined based on a given state, which
corresponds to reversible behavior. Specifically, the structure produces modulo six,
module three, or static (null) behavior strictly based on initial conditions, wluch suggests
the ability to exploit CA for certain sequence generation applications.
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Figure 4. State behaviors in simple 4-site CA structure with rule #90. (a)
Irreversible behavior. (b) Reversible behavior.

II. Reconfigurable Gate Arrays

Reconfigurable field programmable gate arrays (FPGAs) are general-purpose digital
circuits whose functions can be altered under software control. Though the original
FPGA devices were simple, contemporary devices offer the equivalent of as many as

1,000,000 logic gates.

Many FPGAs implement logic with look-up tables (LUTs), which can be thought of a
collection of very simple memory devices (Figure 6). In the example shown, the LUTs
have an arity of four, i.e., four inputs and one output. This is equivalent to a boolean
function of four variables, which is
equivalent to a 16-bit memory (the
number of memory bits is the power
set of the arity N of the look-up table,
ie. 2. Through technology mapping,
any logic function can be implemented
in four-input LUTs, when loaded with
the correct memory contents, and
properly interconnected, or routed.

4

E
Wires ~ vertices
Eidges ~ transistors (shown as ¢ircles left}

Figure 5. How FPGA architecture is

modeled as a graph.

Creating the bit patterns that define
FPGA logic and interconnection are
among the greatest challenges in
electronic design automation. In routing synthesis, we are given a number of terminal
relationships that are defined as the connection scheme between inputs and outputs of
LUTs in an FPGA.

A schematic depiction of a portion of a FPGA is shown in Figure 6, illustrating how the
routing resources exist in conjunction with two LUTs. The hollow circles at wire
intersections represents transistors switches and therefore a potential electrical
connections. The dark circles represent closed switches, or completed interconnects.
map to edges, as shown in Figure 5.
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Figure 6. (a) Portion of FPGA, illustrating two look-up tables (LUTs) and some associated
routing resources. Small hollow (filled) circles are programmable (fixed) connections. (b)
Example routing for F31=AB; F41=CD, simplified view. (c) Same routing showing actual

routing resources consumed to form terminal connections.

Complexity of FPGA technology mapping and routing problems. An FPGA design
consists of multiple isolated nets. FPGA routing is a serious challenge; some designs
may not be routable at all. Most problems involving re-mapping original Boolean
specifications into new ones are NP-complete (NPC) [7]. Routing problems on a single
net involving more than two terminals are known to be NPC for graphs [8] Typical
formulations for FPGA nets are as graph Steiner trees [9], and since the vertices represent
wires, the resulting optimization problem is a node-weighted Steiner minimum tree

(NWSMT).
IV. A Cellular Automata Basis for Field Programniable Gate Arrays

- ] |
T L L

1 .
@ - ()
Figure 7. Direct VLSI implementation of 1-D CA structure

(neighborhood of three). (a) Single cell. (b) Iterated structure,
showing correspondence to CA.

VLSI Implementation of 1-D CAs with Universal Rules. One-dimensional CA structures can be
modeled directly in very large scale integration by combining n-ary logic functions with
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state storage structures (D-type flip flops), as shown in Figure 7 for the case of n=3. The
individual cell design can be tiled to construct CA structures of any size. The D-type flip
flops are connected to a common global clock, which synchronizes updates. If the
functions f(a,b,c) are implemented in 3-input LUTs, then they are capable of universally
implementing any CA rule for the corresponding template (i.e., any 1-D CA with
neighborhood of three). Furthermore, if the LUTs are independently configurable, then
the circuit in Figure 7 can implement any non-uniform configuration for CA structures

corresponding to the appropriate neighborhood structure.

In order to make the LUT-enhanced architecture of

—=] Figure 6 truly feasible and general, we must be
=1 , able to load the initial state and transition rules.
i This is easily done with cascaded shift registers
1
g=f | controlled by a two-phase clock, as shown in
= Figure 7.
=t o With these modifications, the resulting circuit may

then be considered a cellular automata field
programmable gate array (CAFPGA).

Applications. CAs can produce a rich variety of
Figure 8. CMOS implementation behaviors, and reversible CA structures can be

of a shift register-based LUT. exploited as sequence generators. Chang et.al.[10]
describe in more detail the use of CA structures to
produce maximum length sequence generators with lower latency than those
corresponding to VLSI-based linear feedback shift registers, for the generation perhaps of

) keys in cipher streams.
) S S & Similarly, Tsalides et.al.
Rk kel 3 5 T [11] describe specific
i o LT LT ' VLSI implementations of
o f CA-based pseudo-random
number generators
see | s (PRNGs) based on
Figure 9. Configuration of 1-D CA with non-uniform additive rules (#90 and
rule capability. , #150). Das et.al. [12]

further consider the use of
CA-based PRNG:s to facilitate the development of built-in self test structures embedded
with VLSI circuitry. The simple CA FPGA previously described provides even greater
flexibility in that the rule set can be changed to exploit properties of other CA rules,
inhomogeneously throughout the structure as benefits are identified for such
implementations. -
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V. Extensions of the 1-D CA FPGA to a Flexible Nanoscale
Architecture '

While 1-D CA structures can be used to perform certain kinds of computations, such as
sequence generators, their lack of connectivity makes them difficult to apply to
generalized computation problems. Here, we develop a straightforward extension of the
1-D CA that provides a framework for a wide class of digital circuitry, as well as for
studying 1-D CAs with time- varying rule structures.

If we consider the 1-D CA structure to actually operate within two dimensions (the
second being time), elements of a 2-D architecture which could achieve equivalent results
are shown in Figure 10. If the localized dependency structure of a 1-D CA (Figure 10a)
is converted into a feed forward network and the temporal registration structures (the D-
flip flops) are removed from the direct VLSI implementation, then a simple 1-D nodal
network of LUTs is formed (Figure 10b,c). By iterating this single row of LUTs into a
series of rows with the appropriate interconnectivity, a two-dimensional structure,
referred to as a LUT tile, is ormed (Figure 10d). The columns of the LUT tile correspond
to an individual CA site. The rows of the LUT tile correspond to the state values of the
associated CA structure at particular time steps. This is analogous to arranging time
snapshots of a CA structure like a sequence of frames in a strip of motion picture film,
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Figure 10. Extension of 1-D CA structure in temporal-spatial CA FPGA. (a) CA
dependency template for 1-D CA. (b) Feedforward network for single cell. (c)
Feedforward network for multiple cells. (d) Complete LUT tile for CA FPGA
based on feedfoward netwo rk.
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exéept that the entire “strip” is active. No feedback or memory exist within the tile, and
as such the LUT tile emulates a CA of limited temporal and spatial extent.

The goal of conventional FPGASs is to emulate the widest possible class of digital design,
and the flexibility comes at a considerable price. It has been estimated that 90% of the
silicon real estate in a traditional FPGA is consumed by interconnection structures. By
contrast, the LUT tile has limited and simple physical interconnects. Longer-range wiring
is implemented by using the LUT as a pass-through connection. Extending this
formalism leads to an interesting correspondence between the LUT tile and the FPGA
graph structures shown in Figure 5. This correspondence is shown in Figure 11, in which
a LUT tile is shown compared to its equivalent graph structure. Assuming a m Xn tile
with 7 inputs and 7 outputs, the corresponding graph will contain (m+1)n nodes and
m(3n-2) edges. Like the graphs for traditional FPGAs, the LUT tile graph represents
wires as nodes. Edges, however, do not represent routing switches, but rather LUTs that
are configured as virtual wire switches. Rule #170 represents a wire connecting only the
“left” LUT input to output, rule #204 representing a connection to only the “center”
input, and rule #240 a connection to the “right” input. Multiple inputs cannot be
“shorted” to the output, but rather a resolution function or computation function must be
defined on those inputs, which is usually the case in a feedforward combinational logic
network.

An important difference between the Figure 11 graph and the Figure 5 graph is that the
former graph is directional. This difference must be accounted for in computer-aided
design heuristics. Figure 12 illustrates a simple routing-only example of a 10x10 LUT
tile. Figure 12a depicts the desired wiring
a b ¢ configuration. When processed by a simple FPGA
greedy router developed for non-directional graphs, a
connected set of nets is produced (Figure 12b). The
net contains an incorrect net assignment for the 3-5-c

f
’ net, which “orphans” the signal input at node 5 (the
signal cannot go backward from the node below 4 to
h the node for signal 3). The routing is rectified in this
9 ' example by using a routing heuristic that accepts
@ ®) directed graphs, as shown in Figure 12c. Here, the
Figure 11. LUT tile and node represented the merging of signal at inputs 3 and

corresponding graph for routing. 5 is highlighted. This node would correspond to the

(a) LUT tile with three inputs and  output of a LUT, which would implement a
outputs. (b) Equivalent directed computation or resolution function of the inputs (3 and
graph. 5), producing a result at node c. '
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Figure 12. Routing example on 10 x 10 LUT tile graph. (a) Example routing

problem. (b) Incorrect implementation using undirected graph routing (note 3-5-
c net). (c) One possible correct solution.

Perusal of the Figure 10 LUT tile and routing example results in Figure 12 reveals clear
constraints which suggest that limitations exist. One of these is referred to as the cone of
influence. This cone of influence. as evident in Figure 12, refers to the limitation in side
propagation of signals due to nearest neighbor restrictions. As such, significant
excursions of signals “sideways” require many rows in the corresponding LUT tile
structure. At a molecular level, where individual LUTs might be molecules, this
overhead may be acceptable, and it remains an open problem as to whether this is true in
a VLSI implementation. Obviously, the “cone” (which in a graphical construction of
LUTs on a square would correspond to 45 degrees) would be enhanced by increasing the
neighborhood of the underlying CA. Of course, increasing the neighborhood radius
would increase the arity of each LUT, resulting in significantly more complexity n the
resulting design. Another clear limitation of the LUT tile is in the implementation of
highly complex Boolean descriptions. It would appear that, while more or less true for
any FPGA, Boolean descriptions of highly complex structure will “starve” more logic
and routing resources. The need to sacrifice LUTs for wire, the cost of routing, and the
need to carefully stage wire crossings suggest that the impacts of highly complex -
Boolean representations may be far worse for an LUT tile-based architecture.

VI. Conclusion

To continue the increase in device density, we will have to overcome limitations in
lithography and the scarcity of interconnects. The limitations of lithography can be
overcome with FPGA-like architectures, in which the device is fabricated first, and then
configured to perform its function. The proliferation of interconnects can be corrected
with architectures based on local interconnects; cellular automata represent such a class
of architectures. This paper has presented a two-dimensional configurable architecture
based on cellular automata, and outlined a hardware implementation, and a possible
routing strategy. This will serve as a test-bed for research into CA-based configurable
FPGAs for general-purpose digital computing.
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PROGRESS REPORT INPUTS ON MOLECULAR ELECTRONICS ARCHITECTURES
James Lyke, December 1999, for the DARPA/DSO Moletronics Program

Relevant architectural concepts must evolve to channel the developments of molecular electronics,
particularly given the sheer density and problematic issues associated with the imperfect yield in chemical
synthesis. In previous reports, the basic proposal, and in the principal investigator's meeting (July 1999),a
special type of architecture was described based on a periodic tiling of look-up tables (LUTs). The
previous reports alluded to an essential connection of this architecture to concepts from cellular automata
(CA). For the purposes of the present effort, it is not necessary to dwell on the CA basis of the architecture,
but rather the characteristics that make it particularly attractive to molecular electronics. In this edition of
the report, we briefly revisit these for motivational purposes, as the characteristics of this architecture do
address fundamental issues in large scale molecular design. In this section of the report, we will describe a
complete specification of a potential architecture hierarchically, from the individual, element gates to the
"chip" (system) level. Assumptions are made on some parameters, such as the dimension of a nano-
module. We will once again summarize outstanding issues regarding both the specific instance of the
architecture, as well as those characteristic of the CA -based architecture in general.

BASIS OF MOLECULAR ARCHITECTURES FOR DIGITAL COMPUTAT.ION

Molecular architectures are capable of achieving at least one million fold functional densities, even in a
planar (2-D) form, when compared to contemporary (e.g., 0.25 micron) semiconductor fabrication
processes. For arbitrary digital architectures, many of the most challenging problems will appear
intractable. For example, no realistic approach to lithography exists at the molecular scale. Self-assembly
may provide an alternative approach. However, effecting self-assembly of complex digital architectures
based on an arbitrary composition of elemental gates (such as a Pentium) in some brute force scheme on
the scale of billions of devices (and much higher) would be problematic. Even if it were possible to form
self-assembling arrangements of a complex texture in principle, the problems of defects in synthesis would
likely render circuits formed in irregular patterns useless. A potential solution would suggest some ad hoc
incorporation of redundant components, even entire circuits. After all, molecular implementations could
easily afford to make many copies of the same compkx circuit. More serious studies, however, would
reveal that such pronouncements are difficult to realize in practice. In modern integrated circuit design,
circuits of complex, irregular structure (such as a Pentium) rely on process control and high yield, whereas
circuits of regular structure (such as memories) can systematically exploit redundancy in an easily
implemented way. Interconnections will also pose a considerable challenge at a molecular scale, as even
today, the effective volumetric content of integrated circuits is dominated by wiring. The number of wiring
levels is increasing at an alarming rate, such that without some emphasis on new architectural approaches,
the density of future ICs will be interconnection-limited, not gate-limited. In other words, if future
architectures cannot be structured to reduce their interconnection demand, the drive for reduced
transistor size is irrelevant, since it will impossible to wire them together.

Projecting forward based on the incremental approaches used in the semiconductor industry would lead to
futility in terms of defining how to build molecular circuits. It is instead necessary to revisit the problem
from the bottom up. Such considerations led to the present architecture. The architecture is hierarchical,
similar to the way that ICs and circuitry in complex systems is hierarchical. The most basic level of the
architecture requires gates. The first level of "assembly" is based on a collection of gates, referred to as a
nano-module. The next level of assembly is referred to as a tile (collection of nano-modules, connected as
an x-y planar grid). The highest level of assembly involves combining a number of tiles with other nano-
modules and real-world terminal contacts to form a chip. '

NANO-MODULES BASED ON SIMPLE LOOK-UP TABLES (LUTs)

In this architecture, we assumed the basic existence of a universal Boolean function set {AND, OR, NOT}.
In an abstract sense, it is not important how those gates are built or interconnected. In a practical sense,
however, it was known that chemical synthesis approaches would be challenged to assembled complex
grids, whether in a regular pattern or not. An upper bound of about 100 gates was suggested as a first level
molecular assembly. In this sense, one could define one or more types of nano-modules, each based on an
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estimated 100 nanometer feature dimension. The nano-modules would have their own terminals, not the
type intended for connection to the "outside world", but rather to other nano-modules.

Nano-modules would be bonded to each other, physically and electrically connected through a self-
assembly process of chemical synthesis. In this engineered process, the termini of a nano-module would
have the highest affinity for particular termini of other nano-modules. These engineered affinities would
ideally result in an agglomeration process, whereby perhaps in solution, a collection of "loose" individual
nano-modules would eventually build themselves into a tiled arrangement. It would be necessary that the
tiles somehow be engineered to terminate in a particular number of rows and columns (when considering a
planar arrangement), either in a self-terminating process, or in a process which separates larger manifolds
into desired tile pieces.

The concept of tiles of nano-modules is powerful. In principle, each nano-module could be distinct,
fabricated from different "batches". Silicon integrated circuits are designed in a similar way, using cell
libraries. If we consider each type of nano-module to be letter from an arbitrarily large alphabet, then our
tiles could be abstractly considered as strings of letters from the alphabet. Two basic issues exist with this
approach. First, the repertoire of "letters" is a considerable engineering effort, each being a separate
synthesis process. Second, the rules for forming strings in the alphabet would require considerable
investigation. It may not, for example, be possible to connect an "A" to a "U", and so on. While in time,

* these facets of the nano-module capability could lead to intriguing possibilities, there are too many
unknown constraints in a fairly complex design space to permit adequate quantification of all possibilities.

Rather than attempt to establish the entire spectrum of possibilities in the nano-module system, the present
architecture considers a limited "alphabet", consisting of a very small number of letters. In fact, the
architecture originally proposed corresponded to an alphabet consisting of a single letter. We will
eventually show an even simpler architecture corresponding to an alphabet of three letters.

The analogy of nano-modules to letters in alphabet that form strings is a particularly useful one in
explaining the coordination of them into tiles. In this explanation, we will restrict the discussion to two
dimensions (upon further reflection, the extension to all three spatial dimensions would be obvious). We
will consider two examples. ’

In the first example, we will form strings consisting of only the letter "A". A legal stringis simply a block
of "As". Examples of legal and illegal strings are shown in Figure 1. The first string (Figure 1a) is a linear
arrangement of letters. The second string (Figure 1b) isa two-dimensional array of strings. In our current
understanding of the architectures implicated by the strings, it is usually expected that two-dimensional
strings have "straight edges". In other words, though other strings might be legal, such as the one shown in
Figure 1c, the current concept of our cellular, molecular electronics architecture requires that each row have
the same number of letters and each column have the same number of letters. We might call this a normal
form. The case where all rows have m letters and all columns have » letters might be called an mx n
normal form. Of course, in the Figure 1 example, m=4 and n=5.

The concept of illegal strings is easy to represent in the normal form. If, for example, any letters were not
in the correct orientation, then the coordination of those letters would not be correct in an array. Figure 1d,

for example has three illegal letter sites.

A
I
Ao AAAA AAAAoA
AANAA  AAAAA AT
AAAAA  ANA A YRR
A-PA—A—AA AAAAA  AAAA VAACAA

(3 (b) © @
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Figure 1. Legal and illegal strings in a nano-module alphabet. (a)-(c) are legal strings. (d) is an illegal
string.

Of course, the letter "A" is only the symbol for another thing, in particular a nano-module. Our original
proposal discussed a tile based on a homogeneous array of 3-input look-up tables (3LUTs). From a
symbolic standpoint, a single 3LUT structure is symbolized by the letter "A", and a tile of m X n 3LUTs
corresponds to a m X n normal form based on a pattern of an alphabet consisting of only one letter ("A").
This symbolism is only a schematic, suggestive of how the particular letters (nano-modules) must be
arranged.

In the letter arrangements of Figure 1, short line segments are usually shown between letters. These lines
represent connections, perhaps bonds, between the letters. The composition of the connection, including
the number of bonds, depends only on which "side" of the letter the line emanates. If we examine our
3LUT tile, shown in Figure 2, which illustrates all non-power connections, we see a definite structure to the
types of connections on each side of the LUT. The 3LUT tile corresponds to the m X n normal form (case
Figure 1b). It is clear that 3LUTs, which correspond to nano-modules, must have the correct orientation
and connection to satisfy the relationship implied in Figure 2.

. 3 LU=
L d L
LuT 3 3LUT
LT 31 d 31 3

T T

Figure 2. Tile based on three-input look-up table (3LUT) nano-modules, corresponding to Figure 1b case.
TWO-INPUT LUTs (2LUTs) AS THE BASIS OF A SIMPLIFIED ARCHITECTURE

In the September 1999 report, we asserted that it was not possible to form a simpler architecture than the
planar tile based on 3LUTs. It turns out that assertion was incorrect. While it appears to be true that for the
symmetry implied in Figure 1b and Figure 2 no simpler tile can be postulated, it is possible to form a
simpler tile based on a different kind of symmetry. If, for example, selected links fro m the Figure 2 tile are
repressed in a periodic arrangement, it is possible to form a new tile based on two-input LUTs (2LUTs).
This arrangement is shown in Figure 3a.
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Figure 3. Tile based on two-input look-up table (2LUT) nano-modules and corresponding string in normal
form. (a) 5x4 tile of 2LUTs. (b) 5x4 normal form string based on two-letter alphabet.

The new tile requires fewer connections than the Figure 2 tile, and the design of a 2LUT is simpler than a
3LUT. Itis also clear that the symmetry involved is not captured in a one-letter alphabet. Now, it is
necessary to introduce two different letters, "B" and "C", which are alternated to produce a different set of
strings, such as the 5x4 normal form string based on a checkerboard arrangement of two letters.

Once again, the idea of an alphabet of nano-modules is a conceptual convenience. As in a language, strings
are composed from letters based on rules of composition. The simple examples so far indicate some utility
to this analogy. For the interim, we shall return to consider the 2LUT architecture in more depth. The
concept of alphabet as it applies to nano-modules will play a role later as we visit the notion of connecting
tiles together.

The 2LUT is shown in Figure 4 in block diagram form. Its operation is described briefly. It is a simple
memory structure based on the combination of a shift register of four bits and a multiplexer to select one of
the four bits to become the output of the LUT (F_OUT). The selection is driven by two inputs (A,B),
which can distinguish four distinct combinations (AB=00,01,10, and 11). Each (A,B) input combination
selects one and only one bit of the four to specify the value of the 2LUT output (F_OUT). The values of
the four bits are altered only during a configuration process. During configuration, the values of the shift
register chain are fed in, one at a time, using a SHIFT_IN input to the shift register. The advancement of
bits through the shift register is driven by (in this case) a single clock (PHI). During normal operation, the
clock is not active (suspended); rather, it is only used to configure the four storage bits of the LUT. By
chaining the SHIFT_OUT of one 2LUT into the SHIFT_IN of another 2LUT structure, it is possible to
configure multiple 2LUTs with the same clock (PHI), fed by the same configuration signal (the SHIFT_IN
of the first 2LUT). Obviously, this configuration chaining can be indefinitely extended. For the case
where many millions of LUTSs (or more) are involved, it is a practical consideration to break up a very long
"scan chain” into multiple independent chains, fed in parallel. This particular facet of configuration will
become important later, when large numbers of LUTs are used to keep configuration time downto a
manageable time interval. :
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Figure 4. Two-input look-up table (2LUT) as a block diagram, based on D-type flip flop storage elements.

The Figure 4 implementation of a 2LUT structure can be re-specified in terms of elemental gates (AND,
OR, and NOT gates). One possible implementation, which will become the focus for the nanomodule
design, is shown in Figure 5. The shift register implementation is simplified by replacing the D-type flip-
flops with elemental D-latches, which are simpler but require a two-phase clock (PHI_1, PHI_2).
Otherwise, the Figure 5 implementation is identical to that shown in Figure 4.

The 2LUT contains 56 gates if all needed inversions are counted as individual NOT gates. The gate count
is broken into: 20 AND gates, of which 16 are 2-input and 4 are 3-input; 19 NOT gates; and 17 OR gates,
16 of which are two-input and one of which is 4-input. Of the 19 NOT gates, 16 are necessary for
operation of the storage elements in the LUT shiftregister. The other 3 NOT gates are used to eliminate
four electrical terminals by forming accessory inversion of the SHIFT_IN, A, and B input signals.

Terminal or contact requirements are directly established for the nano-module based on the (1) Figure 5
design and (2) the juxtapositional assumptions for tiling. Based on this design, the 2LUT requires a total of
12 terminals, two (assumed) for electrical power, four for operation, and six for configuration. Electrical
termini are assumed to exist universally above and below each nano-module, regardless of type, in the
present molecular electronics concept. In fact, the electrical power contacts are generally repressed in the
represéntations shown here. Of the termini required for operation, two are related to the distinct (A,B)
inputs, and two are electrically identical output termini, each of which is intended to bond with a distinct
neighbor nano-module. Interesting, the configuration requirements dominate terminal count for the 2LUT
case. Here, six termini are required for various 2LUT signals, consisting of two electrical identical pairs of
clock signals (one pair each for PHI_1 and PHI_2) , a SHIFT_IN input, and a SHIFT_OUT output signal.
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Based on the arguments consistent with a tile architecture based on 2LUTs, the special symmetries and
periodic structure require two different nano-module types, which shall be referred to as 2LUTO
(corresponding to "B" in Figure 3b) and 2LUT1 (corresponding to "C" in Figure 3b). The contents of each
nano-module are identical, only the nanomodule "shell" itself is different. In particular, the differences in
each nano-module related to the engineering of the various termini to have the required affinity to promote
selective bonding of the correct termini between adjacent nano-modules. We can attempt to define a more
insightful schematic of these nano-modules: these are shown in Figure 6. In these depictions of the nano-
modules, the affinities would be highest between termini of the same color. As such, a prospective self-
assembly procedure could affect the assembly of many discrete nano-modules into tiles contain 2LUTs
connected in an electrically correct fashion, as depicted in Figure 6c.

(c)

Figure 6. Nano-modules for 2LUT architecture. (a) LUT20 ("B"). (b) 2LUT1 ("C"). (c) Depiction of self-
assembly sequence, in which the various nano-modules self assemble into a 2LUT tile.

THE TILE ASSEMBLY

Assuming that the significant challenges in the construction and assembly of nano-modules can be
overcome, it is important to focus on the specific arrangements of tiles to form a large scale system. Here
we must address how large to make tiles. In other words, what is to be the width () and depth (m) of a
tile? This is the subject of great debate and analysis, as to answer the question completely would require
analyzing the "expressive range" of tiles based on Boolean complexity arguments and benchmark testing
against a number of examples. Another approach involves making a reasonable first cut estimate, which
can be refined pending further assessment of the more abstract architecture considerations. We propose

an initial starting point of m=n=70. This choice reflects an initial attempt to form square tiles, and based on
an estimated 100 nm nanomodule, this would lead to tiles containing 49,000 2LUTs with a physical size of
‘approximately 7 microns square. If the nano-modules are found to have a different aspect ratio than 1:1,
then it may be necessary to alter either m or n accordingly to produce a square tile. Square tiles offer the
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greatest implementation flexibility, based on our current and limited investigations of more complete
architectures, which suggest that when multiple tiles are involved, they may need to be rotated relative to
each other. Packing considerations would then dictate a square form factor for the tiles.

Tiles, are themselves only another step upward in the complete hierarchy of a complex molecular
architecture. It is necessary to introduce "user storage" into the molecular architecture, and tile boundaries
offer a convenient location for register arrays. While, of course, at least four bits of storage are used in
each 2LUT nano-module, those storage sites are used to store a bit pattern that implements a combinational
function. Altering those bits allow for the expression of any of the 16 possible binary functions of two
inputs (272%), but the bt patterns cannot be accessed under normal operation. Rather, the contents of these
memories are affected only by the process of configuration, and are not otherwise alterable during
operation. Instead, separate structures are needed to form state preservation for general-purpose digital
logic. Furthermore, the tiles as proposed are feed-forward structures. It is necessary to introduce feedback
behavior to form complex digital functions. In consideration of these requirements, we must introduce: (1)
a third nano-module type ("D") for user storage, and (2) the concept of rotating tiles to form a feedback
structures.

Third nano-module. At least one other nano-module type will be required to form a complete cellular
field programmable device. The primary purpose of this third nano-module is to provide a method of
holding the output of signals emanating from a tile in synchronization with a global clock. This nano-
module is given the designation "D". The first two nano-modules described were necessary to form tiles,
which create a generalpurpose media for implementing combinational functions. A third nano-module is
needed to implement the following functions:

?? User storage

?7? Bitstream management

7?7 Interface to tiles

In this report, we will only describe the requirements of the third tile, but not its implementation, which is
still under investigation. '

Terminal arrangement. A preliminary design of the interface termini needed for the third nano-module
("D") is given in Figure 7a. The nano-module receives the configuration bitstream and distributes it to not
only other copies of itself but to the other nano-module types. A typical schematic in the "alphabet-string"
format is shown in Figure 7b. Here, two 4 x 5 tiles composed of "B" and "C" nano-modules are
"punctuated" by linear sections of "D" nano-modules. '
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Figure 7. Third nanomodule required for sequential design. (a) Block diagram of single nano-module. (b)
" Alphabet string" schematic. .

Coordination requirements. The third nano-module type ("D") will interface to the output of either "B" or
"C" nano-modules. It is necessary that each "D" nano-module side-couple in a preferred orientation.

Specifically, a SHIFT_OUT terminal on one block must connect only to the SHIFT_IN terminal of another
block. In Figure 7b, a single "D" nano-module is shown in the bottom-right corner, which suggests that the
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nano-modules can couple in two possible ways. It may in fact be preferable to define a fourth nano-module
type, to avoid forming undesired two-dimensional arrays of the "D" type nano-modules.

Operation of the third-type of nanomodule. Linear arrays of nano-modules share a global clock terminal
("G_CLOCK" in Figure 7a). Each nano-module would contain a single user flip-flop, based on an edge-
triggered D-type flip flop. The flip-flop array literally "registers" the outputs of an entire tile,
synchronizing the states of the last LUT of each column.

Configuration of tiles based the third-type of nanomodule. The complex subtlety of configuration
complicates the design of the third tile, which is why this report does not describe a final configuration.
The open question remains on how to pass a single or multiple set of configuration bitstreams through all
nano-modules so that the contents of each LUT may be deliberately and unambiguously defined. The
approach must be robust enough to deal with defects in nano-modules. In Figure 3a, the block diagram
suggests that the configuration bitstream is laterally "passed" from left to right. This approach would be
disastrous if the bitstream itself was corrupt, since an entire row would not be configurable, leading to
blockage of the entire tile. In the notional specification of type "B" and "C" nano-modules, on the other
hand, the direction of the configuration bitstream chain is vertical, passing (we suggest) from bottom to top.
How then do these ¢olumns receive bitstreams? The third nano-module suggests a solution for "bitstream
distribution".

The specification is not complete, however. To understand why, it is necessary to briefly discuss how a
configuration bitstream is formed. A sample of a short bitstream is shown in Figure 8. This diagram shows
a time sequence of three waveforms: "SHIFT_IN", "PHI_1", and "PHI_2". The latter two signals refer to
the configuration control clocks that govern configuration through shifting data into a chain of shift
registers. This clocking scheme is a two-phase clock (non-overlapping), which corresponds to a controlled
propagation of signals through a shift register structure. A single period of PHI_1 and PHI_2 corresponds
to the movement of one bit through a storage bit in a shift register. Since our LUTs are formed from shift
registers, they are configured conveniently by chaining the LUTs together, such that the SHIFT_OUT of
the first LUT is fed into the SHIFT_IN of the second LUT, etc.

The primary configuration signal is the "SHIFT_IN" signal, which feeds something analogous to a "DNA
code" that completely specifies the behavior of an entire device (eventually). Based on 2-input LUTs, four
bits are required to specify a unique function, so if one billion LUTs are involved, a total of four billion bits
or 500 megabytes would be required to specify the total programmation of all LUTs. The pattern of each
LUT would simply be fed in one after another at a frequency determined by PHI_1.

0 0 1 0 1 1 Q shiftir

phil

phi2

~
/
Figure 8. Example of a configuration bitstream, length 7 bits.

In principle, then, one only needs to assemble a very long string of zeros and ones, exactly corresponding to
the desired contents of LUTSs based on the desired configuration of a device. Unfortunately, the likelihood
of having a perfect scan chain through a four billion bit shift register is vanishingly small. Furthermore, the
uniformity of the LUT nano-module designs results in scan-chains being formed automatically in the

process of self-assembly of the "B" and "C" type nano-modules. These chains invariably propagate from
bottom to top in the diagrams shown in this report. Yet, obviously, a propagation signal must get from the
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top of one column down to the bottom of the next column, so that the propagation can continue. A single
defect breaks the chain, rendering the entire device potentially useless.

Resolving both problems requires a potentially complex nano-module, which is currently under
consideration for the third nano-module ("D"). One approach for bitstream distribution is based on
allowing the third nano-module to "steer" the propagating bitstream, using cues embedded within the
bitstream to steer the direction. A simple diagram (Figure 9) will serve to illustrate one potential scheme
that could be implemented with a simple state machine that could be implemented within the "D" nano-
module. Figure 9 represents a linear array of "D" nano-modules, connected at the bottom of a tile of LUTs

. (not shown). When the "system" is initialized, a bitstream is fed into the left-most type "D" nano-module.

By default, each type "D" nano-module "steers" configuration data upward into the LUTs above the
particular "D" nano-module. Each LUT is configured by an arbitrary four bit code (0000 through 1111).
We define a convention that requires a single zero bit be inserted between each LUT. So if three LUTs
each contain all ones, the actual bitstream would be defined as: 11110111101 1110. This representation is
not compact, but permits the definition of a simple escape code, containing five one bits: 11111. When the
escape code is encountered, the type "D" nano-module detects the code and "steers" the direction of
bitstream propagation from "up” to "right". This is an extremely simplistic implementation of a self-
routing message, in which the content of the bitstream itself provides cues for how the overall device is
configured.

The use of self-routing codes have additional benefits. For example, defective columns can be bypassed by
simply form two consecutive patterns of five ones, which would force two switches to steer without any
configuration operations occuring in the bypassed columns. Once a bypass is set, it would never be
reversed for the remainder of the configuration process.

LUT:
LUTs
LUT
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Figure 9. Use of escape codes in "D"-type nano-modules to implement robust configuration bitstreams.

How would such a self-router be implemented? The simplest approach is to make a simple state machine
built from three additional flip-flops that are hidden within the nano-module. The state machines would:
(a) "eat" the delimiting zero between LUT code blocks, and (b) detect a sequence of five one's and alter
direction based on its occurrence. :

TILE JUXTAPOSITION

In order to form a complete molecular electronics system, it is necessary to form a hierarchical grouping of
tiles, which are themselves based on a grouping of various nano -modules. If the dimension of the nano-
modules are about 100 nanometers, then a 100 x 50 tiling of nano-modules would require a 5 micron x 10
micron molecular block. This dimension is much smaller than a human hair. In fact, a standard bonding
wire used in integrated circuits is 25 microns in diameter. Obviously, the tile is not a very useful device by
itself.

Instead, we consider a "tile of tiles". Why not simply build a larger tile? Itis due to primarily to the
exponentially growing complexity of combinational Boolean functions. Similar arguments are used to
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justify using 2-input or 3-input LUTs instead of 500-input LUTs. A 500-input LUT would require a 25%
shift register, which exceeds the number of particles in the known universe. A 100,000 x 100,000
arrangement of 2-input LUTs, unlike the 500-input LUTSs, can be built. Unfo rtunately, the implementation
complexity of Boolean functions is almost always exponential in the number of inputs. LUTs, of course,
embed exponential complexity for their input space. In other words, a 3-input LUT has 2 storage bits and
can therefore implement any function of three inputs. Random Boolean functions of say 16-inputs
(generated by populating a truth table with the results of 2'°=65,536 coin tosses) would require O(2'*™) m-
input LUTSs to implement. As such, very large combinational functions are either intractable or can be
expressed in more compact forms. For example, a 100-input AND gate can be expressed in O(log;100) 2-
input AND gates. Neither extreme is serviced by implementing a very large tile. For the simpler cases, the
vast majority of LUTs would be wasted, and for the complex cases, the intractability concern would make
perceptibly finite implementations impractical. Based on these arguments, it would make more sense to
form smaller tiles, which could be grouped together to imp lement more complex functions, not intractably
complex, but of the order of complexity of those Boolean systems which are implemented today, even
those one million times more complex.

In the juxtaposition of tiles, we assume the introduction of linear (type "D") sub-modules between each tile
interface. If the goal is to form a device of reasonable physical extent (say 1 cm square), then we would

find that it is possible to assemble a 1000 x 2000 grouping of tiles, which would then be the basis of a one-
billion LUT system. ' :

PRELIMINARY CONSIDERATIONS OF REAL-WORLD INTERFACE

What about the "alligator clips” or real-world interface? If, for the time being we assume perimeter
contacts (bond pads at the edges of the large device), the state-of-the-art by the year 2010 will be about 25
microns between terminals, or about 1,600 terminals in a square centimeter.

There is "good news" and "bad news" in this line of pursuit. To expose these points, we need only begin a
superficial consideration of Rent's rule. Rent's rule is an empirical relationship between the number of
gates in a device and the number of terminals normally required:

T=AG
where T'is the number of terminals ("alligator clips"), G is the number of gates, 0.5 < p <0.9 is
Rent's exponent, and 4 is a multiplicative constant (some authors refer to this as the number of
pins per block). Considerable work has been done in the literature to examine trends represented
by actual integrated circuits, with always the inevitable result of reinforcing the largely empirical
Rent's rule relationship. As a current "datapoint", we can consider a typical gate array, such as
the Altera (San Jose, CA) 10K 100 gate array, which has a value of T=400 and G = 10°. By
selecting 4 =1and p = 0.5, we substitute G = 10’ and find a projected value of 7= 316. While
that projection is slightly low, we note that point and now simple replace the value of G = 10°,
only to find the project value of 7> 30,000. This is, of course, about a factor of 20 above the
initial specification of T'=1,600. If we were to insist on reflecting the choices of 4 and p to "fit"
T, the values would be unrealistically low (i.e., A<<1 and/or p <<0.5)

There are two ways to interpret the result. First, we need many more terminals to exploit the
present design. Should the terminal count goals be revised upwards? If we assume an areal
distribution of "alligator clips" then we must relax the pitch requirements due to real world issues
of interconnect, but obviously we are easily able to look at 10,000+ alligator clips on one chip.
We have not considered this possibility in great depth, because: (1) our current power delivery
approach involves access to the "top" and "bottom" of circuitry, which could occlude access the
signal termini, and (2) in three-dimensional extensions of the present approach, we would now
consider the top and bottom surfaces to be interior connections, not external. The second
interpretation is that the Rents' Rule based on a global system (chip) is no more demanding than
what the underlying design hierarchy "can deliver". In other words, the




external interconnections are far more limiting than the internal limitations. This seems
encouraging at first pass, since we had fundamental concerns about internal connectivity. This
latter interpretation is not satisfying, however. It may be, for example, that a complex system has
a hierarchy-dependent Rent's rule. To understand this suggestion, consider that a complex system
can be severed or partitioned into a number of pieces, say from 4-10 partitions. Each partition
will have its own Rent's rule behavior. Then, consider a partition of that partition, and repeat this
process recursively until a fundamental element, such as an LUT, is encountered. At each
recursive level, the Rent's rule behavior will generally be different. For high-performance
systems, it may be in fact necessary to sustain a higher Rent's exponent at intermediate levels of
the hierarchy. In a personal computer, for example, considered as a system, the "box" will
contain billions of transistors, but in fact has a low Rent's rule behavior, as represented by the
number of pins in the serial ports, video connector, etc. If one were to arbitrarily chop the
personal computer into two sections, the Rent's rule behavior of the two pieces would in general
be quite different. It would not be unusual to find many tens of thousands of conductors severed
in such a bisection, considering the circuit board traces and integrated circuit wires that would be
exposed. Simply put, Rent's rule analyses must be considered carefully. That Rent's rule is still a
largely empirical result does not make this analysis any easier.

Summary of the molecular "chip".

We provisionally maintain that the recommended terminal count of 1,600 is workable, pending
further analysis. These assumptions now allow us to define an emergent picture for the first time
of a molecular ele ctronics "chip". The chip would have a planar construction, with a physical
size of about one centimeter square. The number of terminals would be about 1,600 signals, with
independent power delivery. In other words, the 1,600 terminal count does not inc lude power and
ground. The signal terminals would be located at the perimeter of the device, spaced at a 25
micron pitch, which is consistent with the emergent packaging infrastructure within the next 5-7
years. The molecular chip would contain 1000 x 2000 tiles. Each tile would contain 100 x 50
look-up tables (LUTs). These LUTs are capable of implementing any arbitrary 2-input Boolean
function, and the tiles would also contain perimeter data storage structures, permitting complex
digital combinational and sequential design. Since the data structures are at the perimeter of tiles,
and we "count” only two of the four edges of each tile, this would provide an aggregate of one
billion reconfigurable gates with 300 million bits of user storage. What do these capabilities
mean in terms of real worlds, present day capabilities? One crude estimate is that this raw

* number of physical resources is capable of implementing 500 separate Pentium-class processors

on a single chip. Since the gates are completely reconfigurable (as for example, the Teramac or
any other "garden variety" field programmble gate array), it is of course possible to "refocus"” the
gates in problem-specific, optimal ways. We have yet to establish the operating frequency
capability of such a molecular chip. If we assert that at least a 10 GHz cyccle tie is possible, then
iit is theoretically possible to achieve 10'° operations/second from such a chip. Not bad for a thin
scum of planar circuity! If we are further able to exploit a third dimension, then we could
multiply thsi theoretic number by the vertical density of molecular layers. Some suggestions of
an additional million-fold density achieved by exploiting the third dimension would lead to a
theoretical performance of 10 operations / second. If a Pentium is a "10° machine", then this

~ would in some stretch represent the capability of 10'® Pentiums!

Some caveats must be considered however. Just as the Termac makes a 10" operations/second
claim, this is an unrealistic peak number, and in fact Teramacs have not suppressed our normal
models of computation. As many people have suspected, much of the answer to achieving these
spectacular performance claims lie as much or more in the software. The picture for.
reconfigurable machines such as these is made murkier by the fact that the configuration of the
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machine itself is software. In normal desktop computers, software is a series of instructions that
configure an instruction regist3r within a complex piece of hardware. In reconfigurable
machines, the whole machine is specified as software. A desktop computer is a fairly degenerate
case, therefore, of a reconfigurable computer, but a much more well understood model, reduced
to practice for the last 50 years. '

So one caveat is that the performance numbers are only valid in focused cases, and an average
number is probably far lower. This is true for ANY reconfigurable cmputer. A second caveat is
that the thermal performance is a function of the number of gates that are active at any time. In
realworld field programmable gate arrays based on silicon, it is possible to melt bonding wires
by pathologically programming the machine to have too high a performance level. Another
caveat is that as indicated before, the external pincount or bandwidth limitation may well
represent a ceiling in how much performance can truly be exploited. It could well be the case that
molecular super-computers will be idling most of the time, waiting for terminal access and signal
transport. It should be pointed out, however, that almost all of these caveats apply to present day
silicon ICs, and as such, should not be interpreted as any sort of limit argument or sign that
molecular systems will not be all the more when they can finally be built.
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Application of Neural Networks to Lookup Table-based Circuit Design

Jim Lyke / Greg Donohoe / Tom Caudell (UNM)
Air Force Research Laboratory

Abstract
Experimental work is described using artificial neural networks (ANN: s) to design digital
combinational logic blocks based on an m x n tiling of look-up tables (LUTs) in a regular configuration.
LUTs in this context are simple k-input, 1-output memory structures that can implement any single
Boolean function by setting values of each of the 2* combinations of k-bits in the LUT memory space.
Such LUTs are the proposed basis for a new type of field programmable gate array (FPGA), capable of
implementing complex digital networks. It is important to identify the simplest neural sub-network

capabie of expressing all possible dichotomies (22* Boolean functions) corresponding to a single LUT. A
number of these sub-networks are then connected to form a larger complete neural network, equivalent to
a two-dimensional array of LUTs. With an equivalent ANN model of the LUT tile array, procedures for
determining the specifications of each LUT configuration using back-propagation are demonstrated.
Partial or complete truth tables associated with target digital designs become the training and test data.
As such, it is possible to use ANN methods as a heuristic approach for solving the various NP complete
problems associated with designing circuitry for this prospective class of FPGA structures.
Introduction

Improved techniques for the automated design of integrated circuits (ICs) are eagerly sought,
particularly for advanced digital standard cell and field programmable gate arrays (FPGAs). FPGAs,
which are customized by software after fabrication, are of particular interest. A sequence of steps are
involved in very large scale integration (VLSI) design, most of which are NP-complete, and hence
heuristics are required to obtain adequate, albeit not usually optimal, solutions. The heuristics are often
confined to a particular part of the design process, such as routing, and it is often necessary to back-track
not just for new solutions within a particular heuristic, but sometimes back to the beginning of the whole
design sequence to find a solution.

The most common techniques in FPGA design employ standard methods in computer science,
whether it is dynamic programming for logic decomposition or perhaps greedy techniques with simulated
annealing for routing [1].  Recent work has been described involving evolutionary approaches (e.g.,
genetic algorithms), in which the configuration of an FPGA is altered in-circuit to construct tonal
discriminators [2]. Limited work has been presented on other potential design approaches, such as neural
networks.

The intent of this paper is to describe a technique involving artificial neural networks (ANN) to
design FPGA circuits using a standard back-propagation network. This work has been applied to a
special FPGA architecture, described in [3] but re-summarized briefly to emphasize the characteristics
that make it particularly attractive for emulation by ANNs. In examining FPGA emulation, it is important
to understand the expressive capacity of both the FPGA and ANN. This paper extracts an important

43




recent result on the Vapnik-Chervonenkis (VC) dimension to arrive at minimal neural sub-networks, each
of which are capable of modeling a single lookup table (LUT) in the original FPGA. A simple procedure
is then described for: (1) setting up a complete neural network that is capable of completely modeling a
section of the related FPGA; (2) training the neural network with the desired behavioral specification,
which must be expressed as a truth table; and (3) recovering FPGA designs from convergent ANNE..
Results of simple examples are described as a largely empirical exercise, and the limitations and
restrictions of this technique are further discussed.

- A Special Field Programmable Gate Array (FPGA)

Rather than specifying metallization patterns or locations for individual transistors, FPGA
designs use software to select or configure a complex array of pre-fabricated digital circuit resources. In
this process, a user's design is entered with design tools using methods similar to that employed in
standard integrated circuits. The completion of this process results in a configuration bitstream, which
specifies the behavior of the FPGA when it is transferred into the FPGA electrically.

In FPGA architectures, the LUT is one of two essential structures for implementing complex
digital designs. Since it is not possible to implement large LUTs (say 1000-input) in physical devices, it
is necessary to use a large number of smaller LUTs (say, 3- to 5-input) to implement complex designs.
The process of redefining an arbitrary Boolean description in terms of k-input LUTs is referred to as logic
decomposition. Technology mapping refers to the process of mapping this design to specific LUTs in the
FPGA. The other important FPGA structure pertains to the interconnection between all LUTs in an
architecture. Routing refers to the process of determining how specified input/output termini relationships
between LUTs are satisfied. ' ‘

We will illustrate the use FPGAs to realize designs with an example. Figure 1 illustrates a typical
FPGA implementation of two Boolean functions. First, the general "fabric" is shown (Figure 1a),
containing two four-input LUTs and a variety of routing resources. Hollow circles indicate potential
connections, which are implemented by a programmable semiconductor switch. A viable (non-unique)
solution to a two-function design (F31=AB; F41=CD) is shown in Figure 1b, but the routing is drawn in a
way similar to how a designer might think about the problem. In Figure Ic, the true routing situation is
illustrated in terms of resources used, albeit with a greater loss in clarity.

FPGAs are heavily dominated by interconnection resources and are highly irregular, making it
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Figure 1. (a) Portion of FPGA, illustrating two Io%—up tables (LUTs) and some associated routing resources. Small
hollow (filled) circles are programmable (fixed) connections. (b) Example routing for F31=AB; F41=CD, simplified view.
(c) Same routing showing actual routing resources consumed to form terminal connections (from [3]).




difficult to apply non-traditional heuristics in their design. A new architecture, the cellular automata
(CA) FPGA, is derived from CA structures and implements a periodic architecture. CA:s, in particular
binary CAs, are discretized points in a regular m-dimensional lattice, whose values evolve at discrete time
points [4]. The values depend only on nearest neighbors, making CAs a convenient abstraction for
modeling a localized network of nodes involving usually identical Boolean functions. In CA-based
FPGAs (CAFPGAs), architectures are formed by directly replacing each discrete point in a CA lattice
space where a computation would be done by a LUT with an arity equal to the neighborhood of the
corresponding CA. :

To illustrate these CAs, Figure 2a illustrates the template of a 1-D CA with 3-neighborhood and
its repetition to form an infinite network. Typical CA structures have a feedback characteristic. Feedback
behavior, which is responsible for the rich behavior of CAs (Figure 2b), is difficult to analyze in
traditional VLSI design. For this reason most computer-aided design is based on synchronous circuitry, in
which all feedback is synchronized in accordance to a global clock (analogous to recurrent neural
networks [7]). While the power of feedback remains a subject of rich future exploration, the present work
emphasizes only the case of feed-forward behavior.

One way to eliminate
feedback behavior in the Figure 2a
template involves exploiting a
second _ spatial dimension.
Specifically, rather than feed
backwards (onto itself) the results of
the computational cycle, it is
possible to break the links and feed

forward those results onto another

a) ®)
¢ : copy of the 1-D structure. This
Figure 2. 1-D binary cellular automata. (a) Template of operation is reflected schematically

single 1-D CA site (neighborhood 3) and its overlapping in Figure 3a. The iteration of  sites
tesselation to form an infinite 1-D CA structure. (b) Time ¢ template in m rows forms a 2-D

evolution "strip chart" of 144-site CA structure with an f..q forward network (Figure 3b),
identical function at each site, having a random initial phere each row corresponds to the
condition (time increasing in the downward direction) pehavior of an n-site CA at the ith
(from[4]). time step. When a LUT is placed at
each site, the mXn structure

represents a tile of a cellular automata FPGA (CAFPGA).

The most striking difference between CAFPGA and traditional architectures is that the CAFPGA
does not employ distinct routing resources. In traditional FPGAEs, it is not uncommon to find 90% of the
IC "real estate” to be dedicated to routing resources [5]. In the CAFPGA, which has no dedicated routing
resources, wires must be implemented "virtually", i.e., through logic. By programming LUTs with the
truth tables that correspond to a wire, the corresponding LUTs are "sacrificed” to realize routing. As

45




such, a 3-1nput LUT can "wire" an output virtually to any of its three inputs by simply configuring the
LUT to repeat the value desired input as the output function.

Having introduced the fundamental concepts of standard FPGAs and the prospective CAFPGA, it
is possible to explore ANN implementations. ANNs approximate complex functions, and their ability to
do so is best when the expressive capability of the network exceeds the complexity of the function being
approximated. Boolean functions represent an interesting possibility for ANNs, particularly if a
connection between the two could be exploited for digital design. Though the application of ANNSs to
Boolean logic has received attention [6] [7], little work on their application to FPGAs has occurred,
primarily due to the complex, irregular arrangements of logic and interconnection resources in typical
architectures. The CAFPGA may uniquely admit an opportunity for ANN-based design, thanks to its
high regularity. To understand how to model even a section of this FPGA, however, it is necessary to
develop a better understanding of the LUT itself. '

Look-up Tables (LUTSs) and the Form of Approximating Neural Networks .
Boolean functions, expressed as {0,1}”9 {O,I}M, map an N-dimensional input space to an M-
dimensional output space. The
case where M=] is referred to as
a dichotomy. There are 2V
points in the input space, with

Output at ith
e 2¥ . . .
.e coe 2% possible dichotomies of N
®
I+ T e points or "colorings” of those
step

points to zero or one. LUTs are
simply memories with a k-bit

d

address space and (for this
Figure 3. Extension of 1-D CA structure in temporal-spatial CA  giscussion) a single output bit.

FPGA. (a) Conversion from 1-D feedback template to feedforward LUTs can be thought of as
template. (b) FPGA based on tiled LUTs employing feed-forward  gyctures that _implements any

template. v truth table of a k-bit Boolean
function,' since a k-bit address
space corresponds to 2¥ memory locations. Any particular pattern of memory locations defines a single

dichotomy. There are obviously 2% possible spéciﬁcations or dichotomies for a k-input LUT (k-LUT).
What is the simplest neural network that can implement a k-LUT? This implies that some

minimal network can implement afl 2% possible dichotomies of a &-LUT, since a LUT is not itself a fixed
Boolean function, but rather a structure that can express arbitrary functions of its input space. The
Vapnik-Chervonenkis (VC) dimension is a measure of expressive capacity, i.e., the ability of an ANN to
implement a range of functions [8]. Carter and Oxeley describe the VC dimension as mapping of the
separating capacity [9] of an ANN. In traditional perceptron-based neural networks, it is well-known that
a single neuron can only resolve dichotomies that are linearly separable, i.e. those cases where
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where ; and ware k-dimensional input and weight vectors, respectively, ¢ is a bias scalar, and C,, C;

. e
represent classes. The equation of the separating hyperplane [10] is given by x w=0.

In order to augment the separating capacity of traditional perceptrons, the single-neuron

perceptron is augmented with a single hidden layer, where each neuron can contribute a hyperplane in

S S D . |

S—LUF

(2)
Figure 4. Neural network model of
lookup table. (a) Lookup table

(LUT). (b) Form of neural network
capable of implementing it.

consideration of more complex separation landscapes. Carter
and Oxeley recently established a method to evaluate the VC
dimension using Poincare polynomials, which establish a
count of compartments formed in the intersection of
hyperplanes associated with particular neurons. When each
layer is fully connected and the hidden layer contains k
neurons, then it is possible based on these findings [9] to
implement all dichotomies of 2* points. An example, based on
a S-input LUT, is shown in Figure 4. The key difference to
this finding and some previous results on NNs relative to

‘Boolean circuit complexity was that in [7], ANNs were

restricted in connectivity (2-input), which leads to the standard result that most k-input Boolean functions

require an exponential number of 2-input gates to implement [11].

Is this sort of arrangement truly minimal? It seems that the answer is "yes", unless one considers
more sophisticated activation functions. Gaynier and ‘Downs [12] discuss the fact that non-monotonic
functions do have a higher VC-dimension, and they present at least one class of monotonic function with
infinite VC-dimension, which employs. what might be described as a smooth staircase activation function.
Though encouraging, as this suggests the possibility of modeling a LUT with a single neuron, this avenue
was not further pursued, owing to the added complexity in developing a back-propagation formulation for

. such a non-standard function.
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From this vantage, it is straightforward to establish the form of the neural network corresponding
to an mXn CA FPGA tile. As shown in Figure 5b, this is done by simply replacing each LUT
occurrence with the corresponding minimal neural sub-network. The resulting neural network contains n
’ input neurons, n output neurons,
and 3mn+(m-1)n hidden-
layer neurons.” Input neurons
always connect to 9 hidden layer
neurons, corresponding to each
input feeding three different LUT
neural sub-networks (except for
the two edge inputs, which each
connect to 6 neurons). Strictly

speaking, the neural subnetworks
for LUTs on the edge could be
reduced in the number of hidden

Figure 5. A small (n=4, n=5) CAFPGA tile, (a) Schematic,
depicting local connectivity. (b) Neural network formulation,

based on substitution of LUTSs by neural sub-networks. layer neurons, but they have been

retained in this formulation for ease of analysis. Hidden layer neurons corresponding to hidden layers of
the LUT neural sub-networks connect to single neurons. These single neurons, which become hidden
layer neurons in the composite network, were the output neurons of the LUT neural sub-networks, which
themselves connect to either 6 or 9 other hidden layer neurons, depending on whether they are part of
edge or interior LUT neural sub-networks, respectively.

Algorithm for Designing Tiled LUT Networks with ANNs

The algorithm for designing CAFPGA circuitry involves training an ANN in a configuration such
as shown in Figure 5b through a back-propagation procedure and then testing the network using the same
inputs. If sigmoidal activation functions are employed, then the values never truly converge to the desired
values, so a threshold is applied to the ANNs to interpret the output class within {0,1}. The
implementation is illustrated in Figure 6. The goal of a successful implementation is to accumulate no
errors in the test accumulator after presenting an entire set (epoch) of training samples. This accumulator
is reset after each epoch and can be operated while training to provide a guage on overall training
performance.

If the system in Figure 6 can be successfully implemented, then it is likely that a target design
could have been realized by the original LUT network. In order to close this loop, it is necessary to
“reverse engineer” what patterns are implied by the convergent ANN within the original LUTs of the
CAFPGA. To establish this, a simple diagnostic algorithm is applied in situ to each neural sub-network
corresponding to an LUT in the original CAFPGA. This diagtlosﬁc simply isolates each neural sub-
network, scans all possible binary patterns into its inputs (“000” through “111”), and records the output
values. These output values literally define the pattern of the corresponding LUT in the original
CAFPGA. When repeated for all mXn LUTSs, a complete picture of the design for the CAFPGA
emerges. '
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, Results

7
N . .
A neural network simulation
IN DESIRED ) . . .
. S incorporating back-propagation capability
INPUTS (N) SAVPLES (.5 <29 was developed with an input file structure
N
‘ 000 Gosnamves  flexible enough to accommodate arbitrary
OF EPOCH
CLOSED: TRAN B ANY VALUE >0 networks corresponding to different m,n
OPEN: TEST Neural Network 1 N lwussergé-s .
Emulation of VR values for emulated CAFPGA tiles.
ALL WEIGHTS MxNLUT
network Furthermore, simple auxilliary programs
— were developed to automatically generate
QUTPUTS (N) complete neural network input files based
e N on chosen m,n values. This paper only
B o5 >N addresses results of a single case, with m=4

N

and n=5, corresponding to Figure 5, which
Figure 6. Block diagram of training and testing process has a correspondiné neural network
for nxm matrix of LUTs emulated by neural networks.  consisting of 5 input neurons, 75 hidden

layer neurons, and 5 output neurons.
Sigmoidal activation functions were employed on all non-input neurons, and a standard back-propagation
algorithm was implemented [8].

Simple empirical investigations were performed on neural sub-networks with 2 and 3 nodes in a
single hidden layer to verify convergence on all 255 dichotomies of three-input variables. As predicted,
the sub-network with only 2 nodes in the hidden layer did not converge on all functions (an example
includes the XOR function in three inputs), whereas the latter sub-network did converge in all cases.

-Next, the ANN sySteni shown in Figure 5 was trained using the Figure 6 approach on a number of
simple examples, including routing-only examples, a 2-bit adder and a 2-bit multiplier. By using the
diagnostic method described, the LUT specifications were recovered. To verify that this procedure was
correct, the ANN-produced design was hand-simulated to verify its correctness against the truth tables
used to produce the design.

In all cases where convergence occurred, correct designs were produced. A typical result
implementing a 2-bit multiplier is shown in Figure 7. While these designs are in fact correct, they do not
resemble any designs a human would intentionally produce. For example, a grounded signal from the X4
input is unnecessarily OR’d with the X3 input, and some signals are inverted as many as three times, as
they are passed from one stage to another. These odd results are due in part to the definition of training,
which is to produce error-free designs, not necessarily the best or prettiest. But the results are
encouraging because, as is the case of greedy algorithms, they do provide answers, which when bolstered
with additional heuristics can produce better answers. It is possible that ANN-based designs could be
supplied to other algorithms, which could further compact the design by removing extraneous circuit
elements and shifting portions of the implementation through the re-definition of some LUT patterns.
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Conclusions
This paper has described a particular
form of FPGA with regular structure,
_= amenable for emulation with an equivalent

neural network that can be trained to "design"

|, N g circuitry when given a complete enough truth
5 -1 ¥ A&  table to reflect the use conditions of the circuit
‘ ‘ 1 in practice. Incomplete truth tables can also
1 be used, but results for input conditions that
were not specified are unpredictable. In this

w—— s[5} sense, the neural network does not generalize
ﬂ or "fill in the blanks". If one wishes to design
a multiplier, he cannot only give the network a

._..

ooy

subset of training patterns and expect the
resulting design to generate the missing

b I patems.

1, % Using recent results on VC-

PR o [ 1 SR ;

dimensional analysis, it is possible to specify a
Figure 7. Design of two-bit multiplier in a small simple perceptron network capable of exactly
CAFPGA tile produced by neural networks. expressing any dichotomy corresponding to an

Multiplicand inputs are given by X;,X,; multiplier m-input LUT. This understanding led to a
inputs given by X;,X,. way to prescribe a composite neural network

corresponding to any mXn tiling of LUTs.

Such a neural network was demonstrated to converge on a number of design examples using a simple

back-propagation algorithm. Interestingly, it is straightforward to reverse engineer the specification of

each LUT corresponding to weights that are set in the various neural sub-networks during

backpropagation. Since the current results were established on only a limited test case (m=4, n=5), it is
not possible to assert that this technique would work for very deep LUT tiles (m>>4).

Neural networks do produce curious design results, certainly not the ones a human designer

would usually prescribe. The fact that it works at all is intriguing, and it is surely more efficient than

randomly specifying LUT patterns (i.e. guessing which possible of the 2% patterns might be viable),
since the backpropagation approach provides meaningful cues that steer the design to convergence at least
on the limited number of cases investigated. With more study and refinement, it could serve as a part of a
more sophisticated heuristic that employs a neural network kernel as a greedy solver, whose results are
fed into algorithms that could prune away some of the "nonsense" constructs initially produced and fine
tune or compact the remaining portions of the design. These results are encouraging, since they were
easily obtained, and may provide a counterpoint against which more traditional approaches could be
compared.
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1 Introduction

The proposed dissertation will demonstrate that reconfigurable cellular array (RCA) struc-
tures are effective as a general-purpose field programmable gate array (FPGA). The ability
to form an FPGA from a periodic arrangement of simple elements has significant implica-
tions, particularly for molecular electronics architectures. A more detailed statement of the
hypothesis is that: (a) RCA structures are no worse in size than traditional FPGAs (within
a small constant factor) when viewed in terms of the resources required to express the same
functions, and (b)they are scale-able to molecular/nano-electronic levels.

The RCA concept bears the influence of both cellular automata and reconfigurable sys-
tems: If RCAs can be shown to be effective, they may offer a practical solution as an
architecture that can be scaled to molecular levels. The major areas to be addressed in this
study include:

e Investigation of candidate RCA structures;
e Development of supporting computer-aided design (CAD) tools;

o Performance of RCA structures against benchmarks.

The research areas are interrelated. For example, the results in benchmark work may
drive modification of the underlying RCA structure, which in turn affects CAD algorithms.

The remainder of this document will summarize the proposed research effort. This
research plan outlines the specific goals of the proposed dissertation effort, along with an
outline of how these goals are to be realized.

2 Background
This section discusses:
e The motivation for molecular electronics;

e How molecular electronics architectures give rise to RCA as a concept; and

e The RCA itself.

2.1 Motivation

Moore’s law [37] codifies the pace at which contemporary semiconductor processes have
been able to redefine the minimum size of transistors (MOSFET devices) and therefore
the functional density of integrated circuits (ICs) since the mid-1960’s. Few would dispute
the dominance of complementary metal oxide semiconductor (CMOS) processes in digital
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microelectronics, but process scaling must reach a limit. While the Semiconductor Indus-
try Association (SIA) roadmaps charts a path to 0.05 pm by 2010 [2], some researchers
believe that due to factors such as lithography and device stochiometry, the wall will oc-
cur sometime between the years 2004 and 2017 [7, 8, 25, 9]. As such, the development of
nano-scale electronics is being pursued vigorously by a number of researchers [14, 33] as
a potential successor to CMOS technology. The candidate approaches can be divided into
solid-state quantum-effect, solid-state single-electron, and molecular electronic devices [14].
Molecular electronics are particularly promising in that basic devices could theoretically be
mass-produced through chemical synthesis and engineered for self-assembly [33]. With such
processes, it appears possible to side-step the considerable issues in finding lithographic
approaches with adequate resolution and throughput at sub-nanometer scales.

Most research in molecular electronics has focused on elemental devices as opposed to
complete architectures [14]. The theoretical underpinnings of many approaches are based on
the prediction by Ratner that single molecular rectification was possible [31], which was later
experimentally verified by Reed [32]. These accomplishments and other work in molecular
nano-wires [14, 32, 20] have led to a renewed interest in molecular approaches to electronics
based on conductance modulation schemes.

2.2 Influences underlying RCA structures

It is only possible to understand architectural issues by examining device ensembles, the
combinations of many individual devices that yield desired functions. It becomes clear
quickly that architectures at a molecular scale face significant challenges in interconnection
and yield. Considering these challenges give rise to important concepts underlying the RCA
structure:

e Interconnection challenges give rise to cellular automata; and

o Yield issues give rise to reconfigurable architectures.

2.2.1 Challenge I: Interconnections

In the trends associated with normal integrated circuits, interconnections between devices
are becoming an increasingly dominant concern. As shown in Figure 1, more modern, denser
processes require substantially more interconnect. According to SIA projections, a typical
IC built in 2010 will require 10 kilometers of interconnect [2]. MOSFET devices can be scaled
by careful process engineering and device modeling, and the smaller devices offer superior
electronic performance in terms of operating frequency (reduced propagation delay) [9].
Interconnections, on the other hand, suffer from increased resistance with diminished scale
(R~ th, where  is length, ¢ is thickness and w is width). In order to preserve propagation
delays (r ~ RC), it is necessary to maintain larger conductor geometries and intermetal
dielectric thicknesses (C o 1/t), leading to an explosion in the number and thickness of
interconnection layers to combat increased circuit density as devices shrink.

For nano-scale systems, compounding the interconnection manifold growth problems of
resistance non-scalability is the impact of vastly greater numbers of circuit elements (eg. a
mole of devices in a beaker [23] [33]). Interconnections, which organize the various circuit
elements of an IC to achieve a functional objective, define architectures. Architectures,
particularly those implemented in hardware, have properties that are today only empirically
understood. Rent’s rule [3], for example, is an attempt to model the relationship between
the internal complexity of an architecture and the number of electrical terminals required
for external communication:

T=A-G° | 1)
where T is the number of terminals, G is the number of logic gates, A is the average

number of pins per gate, and 0 < p < 1 is Rent’s exponent. In complex architectures,
8
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Figure 1: Comparison of IC processes, circa 1986 (left) and circa 2004 (right), drawn to the
same scale, showing the volumetric dominance of interconnection structures. (Illustration
courtesy of Theodore Denlin, Sandia National Laboratories. [12].)

Rent’s exponent takes the value 0.5 < p < 0.8 [13, 35]. Rent’s exponent is low for systems
with regular structure, such as memories, and is highest for complex Application Specific
Integrated Circuits (ASICs) [3]. Random circuitry has no Rent’s rule (i.e., p = 1), which
suggests that something is naturally imposed by humans in the act of design that provides
for the structure that Rent’s rule attempts to capture. Though the mathematical concept of
separators/bifurcators offers some insight into hierarchically recursive structures [4], Rent’s
rule is still not completely understood. What is possible to say, however, is that Rent’s rule
does seem to capture aspects of hierarchy [13], dimensionality [21], and likely the descriptive
complexity of Boolean functions implemented in architectures. For very large gate counts
(> 10%), referred to as “giga-scale”, Biafore [5] has shown that the average interconnection
length increases when the Rent’s exponent p > 0.5, resulting in increased propagation
delay. Since most complex architectures have high Rent’s exponents, present concepts such
as Pentiums with O(107) gate counts may face severe performance bottle-necks as they pace
Moore’s law curve in the future.

At least, then, based on our present understanding of interconnections, extrapolating
this growth to 2-D molecular-scale architectures will lead to eventually intractable manifold
configurations. For 3-D devices, the problem is potentially far worse, since no fourth spatial
dimension exists for the resulting sprawl of wiring. ICs, especially at smaller feature sizes,
can shrink only so far as their interconnections will permit. This is analogous to the familiar
situation in integrated circuits referred to as “pad-limited” designs, in which the number
of conductor bond pads of an integrated circuit alone determine the size of a perimeter-
connected die (Figure 2). In these cases, the area efficiency (fraction of active silicon to die
size) is impacted with higher terminal counts (~ 1/T2), and for 3-D implementations, the
volumetric efficiency would likely be worse (~ 1/73). The implications are clear: the inter-
connection growth in typical architectures will result in vacuous nanoelectronic structures
consisting mostly of interconnect.

2.2.2 Response I: Cellular Automata

Architectures drive interconnections and at least in part account for the congestion that
occurs at reduced scales. Such observations lead to the inevitable conclusion that alter-
nate architectures with reduced wiring demand could improve the tractability of electronics

‘at molecular scales. A logical alternative to contemporary architectures in the transition
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Figure 2: Tllustration of pad limiting in integrated circuits. Example shown is a micropro-
cessor die with approximately 150 bond pad terminals interconnected within a patterned
overlay multichip module. Bounding box “A” represents area fraction of overall die (“B”)
that is actually devoted to active circuitry (the remaining die area A N B¢ is inert bulk
silicon). The die size is substantially larger than the active area due to minimum bond pad
access geometry considerations. [27]

to ultra-high gate counts involves the exploitation of simple and highly parallel cellular au-
tomata concepts to form a scale-able computation fabric [34]. Cellular automata (CA) come
in many forms, but the most commonly discussed implementations are the binary versions
popularized by Wolfram (1-D) and Conway’s (2-D) game of life [43]). CA can be thought of
as a finite mesh of discrete points at periodic spacing in m-dimensions. Each point in the
lattice performs a simple computation, based on the values of sites in a usually small, sym-
metric, uniform neighborhood. The values of all sites are usually computed simultaneously
at discrete points in time. CA structures based on spatial dimensions with small neigh-
borhoods have low Rent’s exponent (p < 0.5) and avoid the interconnection bottlenecking

 problem associated with scaling.

CA have been considered an opportune architecture for molecular implementation by
Wolfram due to ”their locality and simplicity” {43]. Others went further. Toffoli and Mar-
golus [38] conjectured on the possibilities of “programmable matter” based on cellular au-
tomata, Carter proposed molecular scale cellular automata driven by soliton switching and
transport [6], and Biafore et.al. [5] proposed specific CA embodiments for nano-scale imple-
mentation. More recently, researchers at Notre Dame [26] formulated concepts exploiting
quantum dot cells to implement cellular automata, which they dubbed “Quantum Cellular
Automata” (QCA). The QCA structures that have been investigated [30, 22] are not in
fact based on quantum computation concepts; the name is derived only from the fact that
quantum dot cells are the basis of their construction.

2.2.3 Challenge II: Yield

Even assuming that some CA concept could be used as the basis of a molecular electronics
architecture, the imperfect yield of chemical synthesis will make it unlikely that any non-
trivial molecular ICs could be build without defects. ‘The yield problem for molecular
electronics is analogous to that historically affecting tradition microelectronics systems [42].
While it impossible to predict the yield at this level of technological maturity, the problem
for molecular electronics is expected to be far worse, due to:(1) the sheer number of devices,
(2) the inherent randomness of self-assembly, and (3) the greater spectrum of defects that
nano-electronic devices might be sensitive to.

2.2.4 Response II: Reconfigurable systems

As such, it is necessary to engineer molecular electronics systems to be inherently robust
to defects. The concept of reconfigurable systems could hold promise in the engineering of
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defect tolerant systems. A modern concept in reconfigurable microelectronics is the field
programmable gate array (FPGA) [29]. FPGAs are complex digital circuits that are pre-
fabricated, but functionally customizable by end users as they build these components into
systems. FPGAs employ the full range of basic digital blocks — logic, memory, and inter-
connections — to form a nearly arbitrary variety of complex digital circuits, but the effective
or “virtual” interconnections between these building blocks are undefined until they are pro-
grammed by a user. FPGAs were originally developed to support rapid prototyping, since
customizing a pre-fabricated component under software control can be done in minutes,
whereas developing a customized (mask-based) VLSI design involving specific patternings
of device diffusions and interconnections can take months. Some types of FPGAs are pro-
grammed irreversibly by setting fuse or anti-fuse structures. Another class of FPGA used
static memory structures to set all aspects of the device configuration [39]. The memory-
based FPGAs are especially attractive, since they are reconfigurable. For the first time, it
became possible to consider VLSIdesigns that could be revised not just in the development
laboratory, but even in fielded systems. Correspondingly, the reconfigurable nature of these
FPGAs has been exploited to permit temporal re-use of the FPGA in computation [10].
Reconfigurable FPGAs also permits the possibility of using the reconfigurable “fabric” for
the purposes of self-test [1], fault simulation [1], and defect tolerance [17].

The possibility of harnessing reconfigurable systems for defect tolerance at molecular
levels have been identified by Heath et.al. [23], though they did not identify a specific ar-
chitecture. One might infer that they somehow intend to implement Hewlett-Packard’s
Teramac FPGA architecture “in miniature”. Indeed, the Teramac is a very robust archi-
tecture, as it has been described as being able to operate with as many as 220,000 point
defects [17]. However, implementing Teramac at a nano-scale would be problematic due
to the its richness in interconnect (inherently high Rent’s exponent) [11], which would in-
evitably lead to the aforementioned explosion in interconnections as one attempted to scale
the design.

2.3 Reconfigurable Cellular Arrays

RCAs combine the influences of both cellular automata and reconfigurable systems and, in
doing so, introduce a potential architectural model for molecular electronics.

In the most basic form, a reconfigurable cellular array (RCA) is a periodic arrangement
of simple nano-electronic building blocks. Each block contains a circuit where the logic
behavior can defined independently. Though each is constructed with an identical circuit,
the behaviors of these circuits can be different from each other. If, for example, each block
is a simple m-input look-up table (LUT) containing 2™ bits, then it is possible to express
all 22™ boolean functions. Example functions of logic and ?virtual wire” for the m = 3 case,
which are readily enumerated by a number in the range [0,255] are shown in Figure 3.

Complex circuit structures can be formed by connecting together the outputs of LUTs
into the inputs of other LUTs into (presumably) deliberate arrangements. Simple examples
of planar reconfigurable cellular array topologies are shown in Figure 4. These simple exam-
ples illustrate periodic structures that are reminiscent of cellular automata (CA) structures.
They can be described within the framework of CA, specifically as cellular automata field
programmable gate array (CAFPGA) structures. "

One self-assembly concept that could be applied to form RCA-based molecular electronics
systems starts with very tiny modules, each of which contain a single molecular LUT, for
example. Each of these nano-modules or cells would possess a small number of electrical
contacts, corresponding to signal and perhaps power connections. The modules would be
formed in vast numbers, literally floating in solution. Specific termini of particular nano-
modules are engineered to have an affinity for mating termini of different nano-modules,
such that attraction is promoted under specific chemical synthesis processes. As a result,
under the appropriate conditions, these nano-modules would be attracted to agglomerate
together in a way that produces a structured arrangement, with the outputs of modules
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Figure 3: Example functions of three inputs, expressed within the same look-up table (LUT)
structure.
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Figure 4: Example planar cellular array topologies.
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Figure 5: Depiction of a self-assembly process resulting in a cellular nano-electronics archi-
tecture. (a) Cell type I (b) Cell type II. (c) Agglomeration of cells in solution, forming a
structured arrangement through chemical self-assembly.

connecting automatically to the inputs of other modules. A particular cellular template is
shown in Figure 5, involving two cell types. When combined in solution, these cells combine
in a structure as shown, the basis of a complex molecular electronics architecture.

Some basic properties of RCA structures can be summarized as follows:

e Localization. Each cell connects only to a small number of nearest neighbor cells
(with the possible exception of electrical power and clock connections). The coordi-
nation of each cell to a small number of nearest neighbors is typical of the localization
in CA approaches. Enforcing this condition ensures a low interconnection demand,
consistent with the requirements of a nano-electronic architecture.

o Scale-ability. RCA structures employ cells that appear to be identical physically,
and they are extensible to form structures with large numbers of cells in a periodic
spatial arrangement. Ideally, they would be fabricated en masse as nano-modules that
would agglomerate into ordered structures, exploiting perhaps a chemical self-assembly
approach.

e Inhomogeneity. Each cell of an RCA structure can be independently programmed.
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Figure 6: Inhomogeneity of RCA structures is enabled through the ability to configure each
site from a complete basis set. In this case, the basis set is all Boolean functions of two
inputs. ’

¢ Completeness. The set of elemental functions must be from a complete basis set.

The concept of site-specific functional programming is illustrated in a portion of an RCA
tile shown in Figure 6. Here, each site is a LUT that can implement any single function
from the complete set of two-input Boolean functions (B) [41].

In RCAs, digital circuits can be implemented by directly embedding equivalent Boolean
descriptions into the array, configuring each site with different Boolean functions as required.
As such, each RCA site or at least the RCA ensemble must establish a functional basis that
is complete relative to the range of functions. The procedure of embedding target Boolean
descriptions into a reconfigurable host architecture is identical to that used in static random
access memory (SRAM)-based field programmable gate arrays (FPGAs) [39].

3 Problem Statement

The hypothesis of the proposed effort is that RCA structures can be an effective FPGA
fabric for molecular electronics architectures. A more detailed statement of the hypothesis
is that: (a) RCA structures are no worse in size than traditional FPGAs (within a small con-
stant factor) when viewed in terms of the resources required to express the same functions,
and (b)they are consistent with the boundary conditions presently. known for molecular
electronics.

3.1 Description of Scope

The effort will focus on: (1) defining RCA structures and the associated FPGA architecture,
(2) developing and/or adapting synthesis algorithms to map arbitrary Boolean designs into
these structures, and (3) establishing performance against a set of design benchmarks and
comparing them to at least one standard FPGA design.

3.1.1 Identification of Candidate RCA structures '

The work in this area is expected to define viable RCA templates and an overall FPGA
architecture based on the RCA tile. Figure 7-illustrates the implementation of the same
combinational Boolean circuit on three different RCA templates. Besides establishing viable
templates, this effort would identify all of the basic mechanisms necessary to implement an
implementation of an FPGA assuming the existence of fundamental building blocks.
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Figure 7: Implementation of 4-input majority gate function(true if more than two inputs
are true) with three different (feedforward) RCA templates.

3.1.2 Development of Algorithms for Synthesis with RCAs

The work in this area would focus on developing tools to map Boolean descriptions (com-
binational and sequential) into RCA structures to support RCA simulation and synthesis
performance assessment. Implementing complex circuits within FPGAs involves a number
of computer-aided design (CAD) tools that employ heuristics similar to those used in VLSI.
RCA architectures as FPGAs present special challenges and may require new algorithms ,
but they may have advantages over traditional FPGAs.

3.1.3 Analysis of RCA Mapping Performance

The primary purpose of FPGAs is to emulate other designs, so the work in this area will
attempt to measure how well an RCA-based FPGA can perform this task. Since nearly
every step in the synthesis of a design into an FPGA implementation is NP complete [10], it
is not strictly possible to achieve or prove that a particular design is optimally implemented
within an FPGA (in terms of area or size for example). Hence, it will be necessary to resort
to more empirical means. As such, research in FPGA architectures and associated synthesis
algorithms resort to benchmarks, each representing a different user design example. For
synthesis, previous work has exploited a group of benchmarks developed by MCNC [15] for
evaluating the performance of logic synthesis algorithms. The benchmarks will be a useful
baseline, but may require augmentation or restriction to investigate particular aspects of
RCA mapping performance. For a reference comparison, it will be necessary to consider
implementing the same benchmarks on an alternate FPGA architecture, so that a relative
quality of implementation can be ascertained.

4 Approach
This section addresses the approach to be used in the dissertation to address the three focus

areas cited in the problem statement. A proposed schedule is provided in Appendix A, and
a list of required resources is supplied in Appendix B.
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4.1 Candidate RCA structures

The research approach for identifying RCA architectures will be predominately based on
design and analysis. Only planar tiles will be emphasized in this research, but they are not
the only possibilities. This investigation will, however, address a taxonomy of architectural
possibilities for purposes of context. This taxonomy will define template types and arrange-
ments. Besides tiles, for example, other possible cell site arrangements include cylindrical,
spaghetti, and the “wadded sheet”. :

In the tesselation of sites to form a tile, questions to be addressed include: (1) neighbor-
hood configuration; (2) basis function set at site locations; (3) extent of each tile (number
of sites); and (4) boundary configuration of tiles. Decisions in tile configurations will drive
how combinational logic and sequential logic structures will be formed. One possibility is
that tiles do not contain sequential logic structures. In this case, entire tiles might function
as reconfigurable combinational logic structures, and sequential structures could be intro-
duced at tile edges. Other possibilities include embedding sequential structures within each
site. In either case, a number of physical electrical connections, comprising input/output
(1/0), must be supported. The way that I/O are introduced impose additional boundary
conditions.

1. General connective approaches. This portion of the research amounts to a survey.
Here, structured(“crystal-like”), semi-structured (“poly-crystaline-like”), and random
arrangement (“amorphous”) approaches for building blocks in an RCA are examined.
Even as the structured, localized templates are the emphasis for the proposed work,
it is important to define a larger space of possibilities. It may well be that unstruc-
tured or partially-structured approaches are more realistically approximate of tem-
plates that could be manufactured in molecular schemes. Furthermore, as small-world
networks [40] define a different network topology than the purely localized topologies
of periodic lattices, they may be more efficient in implementing some types of Boolean
designs. Unstructured approaches, however, are expected to carry some significant
challenges along with them, such as establishing approaches to rapidly identify, test,
and program the many individual sites.

Questions to be addressed:
¢ What guidelines can be formulated for selected generic RCA approaches?

2. Combinational logic structures. This portion of the work will attempt to theoretically
/ empirically establish which of many possible templates will make the most effective
RCA tiles. The tiles can be directed or un-directed, based on cells/sites/templates
with a small and usually identical number of inputs and outputs.

Questions to be addressed:

e What homogeneous / heterogeneous tile configurations are possible? Practical?
e What dimension of tile (number of rows and columns) is best?

3. Sequential logic structures. The canonical representation of a general digital system
is shown in Figure 8. The model shows registration and feedback of certain sig-
nals through flip-flop (registers)that are assumed to be synchronized. This portion
of the work will examine strategies for incorporating sequential storage. Two basic
approaches exist. The first approach involves embedding storage within the cell sites
individually. The second approach involves forming other dedicated cells for storage,
which would be attached at the edge of tiles. These intercolation structures would
serve as an interface between tiles.

Questions to be addressed:

e Should registration structures be used (implies synchronous logic)?
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Figure 8: Generalized representation of synchronous (clocked-mode) sequential digital sys-

tem.
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Figure 9: Illustration of “light cone” propagation constraints, resulting in “dead zones” at
input/output terminals.

¢ How should they be embedded in the overall RCA architecture (embedded within
each tile, embedded periodically, or embedded in edge structures)?

e Are alternate sequential approaches (asynchronous) practical?

o If synchronous circuits are implemented, how many clocks are used and how is
clock distribution handled?

4. Input / output terminal structures. This portion of the work will establish the bound-

.ary conditions governing the coupling of electrical signals in and out the RCA archi-

tecture. An example of the constraints that arise from RCA tiles is shown in Figure 9,
which depicts the “cone of influence” limitations imposed by localization effects.

Questions to be addressed:

e What terminal distribution schemes are possible?
e How densely can termini be arranged?

® Does the “cone of influence” present problems (e.g., “dead zones”) in practical
configurations?

. Configuration support. This portion of the work will pursue approaches for configuring

large RCA structures, based on the assumption that each site in an RCA employs a
shift register, which is accessed through dedicated terminals. The dedicated terminals
on each site form a second network, dedicated to configuration, in which the shift
register of one site feeds into the shift register of its neighbor. This chaining is repeated
across the entire array, so that in essence the RCA structure can be programmed with
a single binary string. An example configuration depicting a connection of sites based

62




Figure 10: Tlustration of how a planar array of sites can be configured by a single con-
figuration bitstream chain, which pre-supposes that the cells are based on shift register
memories.

on shift registers is shown in Figure 10. In FPGAs, this string is referred to as a
configuration bitstream.

Implementing the configuration bitstream in RCA structures, particularly those im-
plemented at the molecular level, is challenged by presence of defects. Without special
precautions, if a single configuration bitstream were used to program a very large RCA
structure, a device would be rendered ineffective by any defective device in the chain.
Instead, it is necessary to consider a set of techniques that will make the configuration
process more robust to point defects in the scan chain, such as redundancy of configu-
ration structures and bypass switches within individual sites and employing a number
of scan chains. The latter approach has the added benefit of accelerating the entire
configuration process.

Questions to be addressed:

e What auxilliary structures are needed to support configuration?
e What schemes should be exploited to optimize robustness?

4.2 Algorithms for Synthesis with RCAs

This segment of research will develop and/or adapt computer-aided design (CAD) tools
for RCA-based FPGAs. The emphasis of this research will be to first establish an initial
framework capable of producing even crude results. Most of the research effort, however,
will be concerned with investigating ways to improve this rudimentary framework to exploit
more directly the advantages of RCA-based architectures, including:

e periodic arrangement (for at least the “crystal-like” tiles)leading to potential transla-
tion invariant implementations for some functions

e possibility of exploiting the cellular automata basis of designs to implement more
efficient syntheésis

e incorporation of features necessary to handle defect tolerance

e the interchangeability for cells to implement logic and routing functions

Part of the design process flow for FPGA-based design is shown in Figure 11. These
initial steps of design are more or less the same for standard FPGAs and for FPGAs based
on RCA structures:
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Figure 11: Part of computer-aided design (CAD) flow process for Field Programmable Gate
Array (FPGA) devices.

1. Design Description. An entire complex digital design is developed through schematic
capture, description in high-level design language, timing diagrams, or a combination
of these. The complex designs are usually expressed hierarchically and modularly,
especially for very large designs.

2. Decomposition algorithms for RCA architectures. Complex functions are described
hierarchically, not expressed at a level of granularity adequate for direct implementa-
tion using basic building blocks. Logic decomposition, therefore, performs an initial
flattening of the hierarchical input description into many simple elements, usually
two-input gates. Optimizations are also performed at this design phase to minimize
circuit size (number of elements). Fortunately, a rich base of research exists for FPGA
CAD [16, 18], including useful tools that can be readily exploited such as Berkeley’s
SIS tools [36]. It is important to understand that such tools attempt to find optimal
representations in terms of size or speed (depth), but optimality cannot be guaranteed,
since the associated problems are NP complete.

3. Partition algorithms for RCA architectures. In designs involving more than one tile, it
is necessary to parse the representation of a complex into portions, each of which can
be accommodated within a single tile. More generally, if a hierarchy is involved, then
partition algorithms must work at a given level of hierarchy to perform segmentations
of designs to produce partitions capable of being implemented with the type and quan-
tity of resources within that hierarchy level. Partition algorithms have been extensively
explored for VLSI in general and FPGAs in particular, starting with Kernigan-Lin [24].
Most modern approaches involve some variation of Fidducia-Matheseys [19]. It ap-
pears that the RCA architecture does not introduce any fundamental difference to how
partitioning should be done, other than the immense scale expected in future molec-
ular architectures. As such, it is expected that existing algorithms can be directly
adapted as required.

4. Technology mapping for RCA structures. Technology mapping denotes the step in
Boolean synthesis which directly correlates a desired design partition with a specific
FPGA technology. Technology mapping itself is a process that includes a number of
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steps. One of the first steps involves logic re-packing. For example, if an FPGA is
based on 4-input look up table (LUT) building blocks, then the previously flattened
logic is re-packed into a number of 4-input LUTs. This process is still abstract in the
sense that while compatible with a particular FPGA technology, the descriptions do
not bind to a particular set of resources in the FPGA devices. A technology mapper
might specify that, for example, seven, 3-input LUTs are required to implement a
function, but it would not specify which of the many 3-input LUTs contained in a
target FPGA shall actually be used. This initial step is illustrated in Figure 11. Up
through this step, much of the CAD process is common to all types of FPGAs.

Subsequent steps in technology are concerned with mapping logic blocks to particular
blocks in an actual FPGA architecture, forming the interconnections between the
blocks, and establishing connection to input/output terminals of the overall circuit.
Constraints can be imposed in design, such as forced resource designation (e.g., the
use of specified I/O terminals) or timing constraints. In technology mapping, RCA
structures are different from other types of FPGAs due to the non-distinctiveness of
routing and logic, which may require new heuristics.

e Placement. This step performs the designation of specific logic resources in a
target FPGA to implement the Boolean functions in a partition of a larger cir-
cuit. It often works in conjunction with some coarse knowledge of global routing
constraints, since in traditional FPGAs full logic resource utilization in one area
of a design may over-tax routing resources, forcing a more sparse distribution
(LUT depopulation) to more completely balance routing utilization.

e Routing. Complex systems involve usually at least two levels of routing: global
and detailed. Global routing, as described, serves to guide logic placement,
whereas detailed routing involves specific path specifications between the ter-
minals of the complete wiring net-list. :

RCAs differ fundamentally from traditional FPGAs in that they do not have dedicated
routing resources, but rather implement routing functions using LUTs. It is simple enough
to use LUTs as virtual wires, since a wire is simply a non-inverted function of a single
Boolean input. The use of LUTs however for both logic computation and wiring tightly
couples the normally separate heuristics used in FPGA behavioral synthesis. It is now
necessary to consider the processes of logic decomposition, technology mapping, placement,
and routing in more integrated treatments to obtain efficient results. ~

Figure 12 illustrates a simple example of how a typical logic circuit is synthesized into a
3-input (3LUT), 3-output (single-function) RCA template. A logic circuit in Figure 12a is
first converted through decomposition into an abstract, equivalent representation of 3LUTs.
The processes of technology mapping/placement directs the abstract 3SLUT form into specific
sites. The placement is non-unique and in fact is translation invariant over a limited region
(veferred to as the “cone of influence” or “light cone” in CA terminology [28]). This example
highlights special features of the RCA:

e Clearly, in some cases a LUT acts as a wire, but in other cases it performs computation.

e Virtual wires are furthermore directional, which can complicate routing heuristics
based on non-directed graphs.

o Translational invariance might be advantageously exploited in new algorithms.

o Cellular automata approaches could be directly mapped in RCA hardware as a possible
alternate to ad hoc VLSI approaches in certain cases.

The special features of RCA structures suggest the possibility of combined heuristics,
in which for example placement and routing are combined in a single algorithm. A recent
exploration involving neural networks is summarized as an illustrative example.
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Figure 12: Process of mapping Boolean circuit into RCA.

Neural network modeling as a combined synthesis heuristic. For at least simple
problems, some intriguing possibilities exist for training-based heuristics, in which an RCA
structure is modeled as a neural network. In this case, all aspects of a combinational network
synthesis problem are reduced to training a representative, equivalent neural network using
functional truth tables as training/testing samples. The approach of using neural networks
to model combinational RCA networks is simple in principle. The most important step is in
finding a neural network model capable of representing an individual site. Based on recent
work on analyzing the Vapnik-Chervonenkis dimension of simple perceptron networks, it
can be shown that a k-input Boolean LUT can be represented with a single hidden layer of
k neurons, as shown in Figure 13. From here, it is possible in the case of feedforward RCA
networks to simply substitute each site with this perceptron subnetwork to form a complete
neural network, fully equivalent in expressive capacity. More importantly, the network can
be trained using traditional methods, such as the well-known back-propagation algorithm.
To examine the viability of this approach, a simple RCA network shown in Figure 14 was
modeled by a corresponding neural network. This neural network was trained to design a
two-input multiplier, as shown in Figure 14c. That the approach works at all is intriguing,
though the design results are certainly not spectacular. As is often the case in modern VLSI
design, however, often any result that works is sufficient. Furthermore, it is a simple matter
to devise algorithms that could post-process a neural network result to eliminate obviously
spurious portions of a design.

Tool Mechanics. In order to exploit multiple approaches/heuristics, it will be necessary
to set up a common framework under which candidate algorithms can be invoked selectively.
Another important goal of tools developed for RCA structures is flexibility, so that a number
of different candidates might be explored. ‘

4.3 Benchmarking RCA Performance

The work in this area involves the empirical processes of developing and applying a set
of test designs as a benchmark set against prospective RCA architectures for comparison
against a reference (non-RCA) architecture.

1. Development of benchmark set. The most common benchmarks used in pedagogical
studies are the MCNC benchmarks [15]. These benchmarks are designed to stress
different types of synthesis approaches and offer a useful basis for comparison. It
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Figure 13: A binary look-up table and an equivalent perceptron network.

Figure 14: Boolean synthesis on RCA tiles using neural networks. (a) Example RCA tile,
with each site containing a look-up table. (b) Equivalent neural network. (c) Results for
design of a 2-bit binary multiplier.

67




will be desirable to augment these benchmarks with other test designs, such as the
sequence of complete Boolean functions of n variables, sequence of increasing complex
adders, multipliers, parity functions, majority gates, etc.

2. Identification of target and reference FPGA architectures. A traditional FPGA (e.g.,
Xilinx, Altera) will be compared to RCA based counterparts of a similar capacity.

3. Benchmark experimentation and analysis. The research approach for ultimately an-
swering the question on how FPGAs compare is largely based on empirical trials in
synthesizing benchmarks on candidate FPGA architectures. The important question
to be addressed is: Are there systematic trends in the divergence of size in solution
circuits as the size of the starting description increases?

5 - Assumptions

The RCA as an FPGA, even abstracted away from any specific VLSI or nano-scale embod-
iment, is a rich exploration area. The RCA in molecular embodiments can exploit three
spatial dimensions, but the proposed effort will be limited to planar implementations. The
emphasis of this research effort will furthermore be on combinational circuits, though se-
quential circuits will also be explored. A VLSI version could be constructed, and VLSI
implementations may be studied in part to highlight sizing and/or performance issues, but
this research effort does not plan to carry forward a completed VLSI implementation.
Other assumptions are delineated:

e This effort utilizes assumptions consistent with molecular electronics approaches, but
does not address the problems associated with any particular scheme.

e This effort will concentrate on combinational designs, although extension to syn-
chronous digital design will be pursued. The effort does not plan to develop tools
for complex asynchronous digital design, which is still largely an open research prob-
lem in the general sense for VLSI design.

e This effort will discuss templates in 1, 2, or 3 spatial dimensions, but in-depth work
will be limited to planar templates.

e This effort can be abstract to alternate embodiments, including CMOS implementa-
tions.

¢ Propagation delay metrics are assessed generically, in terms of LUT delay and any
associated “plumbing” in accessory structures.
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PROGRESS REPORT INPUTS ON MOLECULAR ELECTRONICS ARCHITECTURES
James Lyke April 00 for the DARPA/DSO Moletronics Program

This report section outlines the third update of the AFRL effort to establish an architecture capable of scaling towards a molecular
implementation. The approach exploits cellular automata concept to produce a defect tolerant fabric capable of unusual computation.
In this period of performance (January — April), we focussed on a number of design issues associated with the architecture previously
described. We expose issues in some conventional approaches to circuit routing that are easily remedied through improved
algorithms. More exciting we describe a novel approach to design involving a neural net model of the basic molecular electronics
architecture. We also define a prototype design that can be fabricated using a combination of advanced silicon integrated circuit (IC)
and 3-D packaging technologies. Though not a true molecular design, this proposed prototype serves as a “dress rehearsal” of a
gigascale (more than one billion logic gate) system that could be built as a single molecular integrated circuit.

This text accompanies a PowerPoint briefing on the gigascale architecture and heuristics. Its expose re-summarizes some results of
the previous reports, as the briefing is intended to stand alone.

Slide 1 Most of the impetus of the $150B microelectronics industry is
Update on CellularAutomata-based focussed on harnessing the potential of and continuing the
Gigascale Electronic Architectures improvement of the MOSFET. While most research focusses on
driving MOSFETs towards the limits of physical realization, a few
Jim Lyke, Al Force Research researchers are attempting to breakthrough into a domain of density
Laboratory and capability a million-fold beyond the best silicon processes.

This presentation deals with the field of molecular electronics, in
particular with the special challenges of harnessing it in the form of
architectures.

This chart illustrates the molecular architecture template originally

" proposed (right) and a form of paper-thin circuit packaging (left)
developed through independently funded AFRL research. Such an
approach allows for thin electronic planes of silicon-based circuits to
be formed, interconnected, and stacked to form a dense electronic
block. It is possible through the combination of many circuit layers,

_each of which contain a checkerboard arrangement of advanced
integrated circuits, to form a very large scale system with a 100M —
1,000M gate equivalent form. Such a system, if built would employ
a great number of conventional ICs to implement the equivalent
function a single, small molecular integrated circuit, based on the
reconfigable cellular array (RCA) architecture which has come to
form the heard of the current AFRL architecture concept.
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Before we attempt to address the architectural foundations of
molecular electronics, it is important to address why we need to
consider them. Moore’s law provides an obvious roadmap and
motivational basis. We briefly discuss the challenges of today’s
microelectronics, for some of these impact all future architectures.

Next, we will deal with the central issue of architectures in molecular
electronics. We introduce a cellular automata basis as for this work
and ascribe its correspondence to the whole of combinatorial digital
systems. We show these to be a plausible basis for molecular
approaches that exploit a self-assembly paradigm.

Then we address the elements of proposed research. The research
can be divided into the abstractions of architectures for nanoscale
media and heuristic investigations to leverage cellular automata and
VLSI electronic bases for design. In both cases, we are concerned
with the expressive range of cellular forms of reconfigurable
architectures, especially as they impact design approaches as we
know them today.

CMOS is expected to reach a scaling limit in the near future, though
no one can seem to definitely say when the we will hit the “wall”.
Industry marches to the wall, maybe convinced that it really isn’t
there. After all, such walls were predicted before but they always
seemed to give way.

Molecular electronics concepts promise to beat our current notions of
limits in even the most aggressive CMOS technologies. When three-
dimensional approaches are factored in, we are talking a potential

- twelve orders of magnitude compared to present-day CMOS. Based

on the present assumptions, molecular electronics will allow Moore’s
law scaling to the year 2050.

We cannot hope to convey in short a talk, much less this slide, an
adequate implication of the impact that simply meeting a Moore’s
curve will have on aerospace systems in the future, but it has been
remarked that the equivalent computation of a human brain could be
realized as a single chip in the year 2020, a legion of human brains
by the year 2030, and one billion human brains on a single chip by
the year 2060. Intelligence will be so embedded and ubiquitous as to
defy simple descriptions. Some have suggested that human
intelligence itself will have to be artificially augmented simply to
maintain parity within the next 40 years. We cannot afford to ignore
these implications, despite how outlandish they may sound today.
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A number of elemental approaches to molecular electronics are being
pursued under the Molectronics program. In the conductance
modulation approach molecular devices mimic the macroscopic
devices built in bulk silicon. The figure illustrates a basic donor-
bridge-acceptor “design molecular” which is analogous to a
semiconductor pn junction.

The pn junction molecules can be theoretically extended to a
monotonic logic (AND/OR) system, essentially equivalent to a diode
logic. This figure extracted from the original proposal (need to get a
better picture), suggests a molecular logic function f=a+b+c.

A single molecular logic function, however, does not alone from a
viable electronics architecture, as many basic questions must be
addressed. As random agglomerations of molecular gates will not
likely produce a useful system, it is clear that some structure must be
imposed upon individual devices to produce an arrangement that can
be harnessed in some general fashion to create complex designs. The
problem is exacerbated by the sheer scale of a potential molecular
system. At the scale of 10'® devices (about 200M devices for each
person on the planet), it is difficult to conceptualize the motions of,
for example, schematic capture. More complex is, of course,
translating the design into a legitimate implementation. Design
verification can be equally difficult. In fact, the computation
resources for any problem at the n = 10'® scale will may appear
intractable if its time complexity functions is worse than quasi-linear
0(10'®). Even algorithms that are quadratic the next lowest
polynomial order will seem intractable on a machine one billion
times more powerful than a Pentium. Translation of molecular
devices termini for external access and an effective packaging and
assembly approach are not addressed by looking at only building
blocks. Testing finished devices for their conformation to the
intended design is potentially as difficult as “ordinary” design
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verification (for example, automatic test pattern generation is NP-
complete). Yield, on the scale of molecular devices, cannot be
perfect, and may well be worse in a relative sense than that for
traditional silicon ICs. Defect tolerance must be “institutionalized”
into molecular versions of integrated circuit designs. Unfortunately,
even if these barriers are overcome, design bugs are likely to exist in
even the most thoroughly conceptualized designs. If Windows 2000,
with its tens of millions of lines of source code, is not the expression
of perfection upon its initial release, how can we expect a similar feat
from a chip containing a billion-fold increase in logic functions? The
provisions for design rectification in hardware are analogous to
bug/fix releases in software, and must also be institutionalized in the
design of molecular electronic systems?

The research roadmap we consider is loosely defined in terms of near
term and far term plans. The near term considers the underpinnings
of architecture and provides guidance to molecular electronics
developers (i.e., DARPA Moletronics team members). It is possible
to consider more concrete demonstrations of gigascale architecture
that can be developed to illuminate the challenges and potential of
Moletronics through “ordinary” VLSI implementations (though, not
that ordinary). This sort of testbed makes it possible to focus more
abstract architectures and features (i.e., defect, assembly tolerance)
and may well uncover additional second and third order effects that
might go unnoticed. If the near term plan can identify full, realistic
architecture templates in detail, establish software tools, and
converge on at least one molecular approach, then it is all the more
realistic to expect that a molecular electronics solutions will emerge
in time with enough overlap to the SIA roadmap to make
Moletronics a serious contender for a CMOS replacement.

In this effort we are centrally interested in the role of architectures in
nanoscale systems. Here, we see three central challenges....
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The trends of dimensionality are illustrated somewhat in the simple
figure. In it, a graph representing a 3-D design is flattened into a 2-D
implementation. In the implementation, identically sized square
modules are used, and it is clear that not only are crossovers induced,
which require additional interconnect layers, but some
interconnections must be longer than others due to packing
considerations. On the other hand, a 3-D implementation of the same
graph would not require crossovers and would have a shorter
minimum average interconnection length.

Another problem in design which complicates interconnect is the
notion of hierarchy. At any given level in design hierarchy, a black
box is usually formed as an interconnection of several black sub-
boxes. At each successive level in a hierarchical design, the current
set of interconnections (literally in some cases) is built on top of
interconnections defined at lower levels. More complex designs
have more hierarchical levels, which leads to interconnection growth.
Silicon gate arrays devoted otherwise useable silicon resources to
channels for interconnect, and the interconnect resources are always
heavily competed for in large-scale designs.

Interconnection sprawl is in part gauged by growth in terminal count,
as codified in Rents’ rule, which describes pincount as a power law
relationship to the number of building blocks in a complex circuit.
Molecular architectures may need to discover a way to “tune” the
Rents’ rule relationship, which is a concept that makes some sense in
the proposed architectures.

Behind the whole issue of interconnection complexity are factors that
are somewhat intuitive but more qualitative/empirical vs.
quantitative/analytical. It must be clear, for example, that
dimensionality plays a role in interconnection complexity. Ann-
dimensional cube, for example, is necessarily congested when
represented in m(<n) — dimensional space. Architecture in digital
design do not necessarily conform to the standard notions of 3-D
spatial limitations, and interconnection complexity can suffer as a
result. ’
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This chart illustrates the progressive intractabilities of
interconnections with scale. At 0.1 micron, it is estimated that 10
kilometers of interconnect will be needed to wire a typical IC. Itis
not hard to imagine what happens at circuit scales one million times
denser.

Interconnections are a necessary evil when dealing with
architectures, and they become more complicated with scale, as
shown in this Figure. Based on the cross-section of 1.0 micron and
0.1 micron processes, it is evident that the complexity of the
interconnect manifold is worse with diminished scale. This is what
could be referred to as a “fact of life”. It is also something that
molecular electronics’ designers must cope with and it could be more
than they bargained for. Unfortunately, with the promise extremely
tiny devices comes, the baggage of conductor-dielectric manifolds
that guarantee each signal connects in a manner prescribed by
architecture. Any researcher who claims they can build nano-
electronics systems is only partially correct if they cannot address
this issue. Consider the size of the interconnection manifold in the
limit where the device size is zero. Without mitigation of
interconnection, the true density of complex systems may actually be
expressible as a parabolic function whose minimum occurs at a
critical dimension above, not below, nano-scale.

The punch line of the our research plan in architectures is to leverage
two substantial research bases, one being cellular automata, the other
being digital electronics. In this manner, a simple and direct
relationship is established between CA and digital electronics. The
equivalence may offer new possibilities in its own right. Certainly, it
is possible to achieve universal computation in the Turing machine
sense. The approach contributes a reconfigurable basis to a CA-
inspired architecture, which gives rise to a straightforward attack on
defect tolerance. The new architecture is encouraging in that while it
can harness the existing base of computer-aided design (CAD)
approaches, it offers hope that still better approaches can be found
that exploit the special features of the architecture to simplify
implementation and test of complex designs.
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We introduce a few basic concepts of cellular automata (CA). CA, in
this case, are points in a regular discrete space (1-D to 3-D), perhaps
on a fixed grid. Each grid point has a discrete value, either “0” or
“1” (binary). All points in the grid (CA structure) are updated at the
same, discrete time intervals. Most importantly, the updates are
based on simple, Boolean functions (rules) which depend only on the
nearest-neighbor grid points. As such, CA are possibly the simplest
structures capable of sustaining computation in any meaningful

sense.

It is sometimes hard to believe that structures so simple can produce
behaviors so complex. This chart illustrates an evolution of 1-D CA
structure, which at any one instant is represented as a single line, like
the line in a raster scan display. The picture is a spatio-temporal strip
chart in which time proceeds down the page. Each new line is
computed based only on values of the previous line (black = 0 and
white = 1).

This figure illustrates the evolution of a 1-D CA using different rules.
The top of each figure represents a simple linear CA structure with
an initial pattern, and each row represents the value of the sites at
progressive time steps. By simply changing the state transition
matrix, the entire behavior changes, as evidence in the figure.
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Examples of physical phenomena which correlate well with CA
behavior are shown.

The original molecular architecture is based on a 2-D cellular array,
converted from a 1-D CA structure. This effect is achieved by
simply converting a 1-D feed forward structure. The entire 1-D
(linear) CA structure is replicated into a number of rows, forming a
2.Dtile. In this case, the neighborhood is the same size, but the
source values are taken from the previous row.

CA site can be modeled by a look-up table, which directly-
implements the state transition matrix. In this figure, a 1-D CA with
a three-neighborhood (consisting of a site and its left and right
nearest neighbor) is modeled directly with a 3-imput look-up table
(LUT). Since the LUT can be reconfigured the LUT can be thought
as a universal CA site, capable of implementing any possible binary
CA function.
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By using a look-up table (LUT) structure, it is possible to have a CA
cell imitate any Boolean function of three inputs in this case. This
chart shows a number of possible functions and the corresponding
rule numbers. It turns out that the ability to imitate a wire is one of
the most important cases, for this simulates the ability to form
interconnect on demand. It is also worthwhile to note that LUTs can
be programmed to ignore one or more inputs, and they can be
programmed as NULL functions as well.

The result is the original molecular architecture. The feed forward
structure is identically imposed at all site locations. The architecture
can be referred to by a number of terms, including molecular FPGA,
cellular FPGA, or reconfigurable cellular array (RCA). It is different
from the standard notions of CAs in that:

Q) it is neither “properly” a 1-D or 2-D CA, but rather a 2-D
implementation of a 1-D CA;

) each site can be programmed distinctly.

Some assertions can be directly about the molecular architecture.
Some are obviously evident, others will be illustrated further. The
first point is that the architecture is periodic in a simple way. Each of
the LUTs would be in principle amenable to self-assembly (the LUT
contents are discussed later). The LUTs are individually configured
so as to produce from their ensemble a desired complex behavior
reflecting the intended digital design. It should be evident that no
interconnect explosion would result in a reasonable implementation
of the architecture, which suggests that either:

0] the notion of architecture is somehow fundamentally
altered, or

2) that the accommodations necessary to implement complex
interconnections are somehow dealt with by the architecture, perhaps
due to the notion of the “virtual wires”.

As it may be that virtual wires can be used to time the interconnect
complexity reflected in a desired design, they can also be used to
tune the specific way a design is located onto the LUT mesh. We
suggest now and show later that this gives rise to the notion of defect
tolerance.
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The molecular or cellular field programmable gate array (FPGA) is
now compared directly to traditional FPGAs, in part to demonstrate
why the latter cannot be scaled directly to a molecular level.

Real-world FPGAs implement the key elements of all digital design:
)] LOGIC,

) MEMORY and

3) INTERCONNECT.

By combining a look-up table with a flip-flop (upper left), the logic
and memory elements are established. This structure is one of the
many ways that a configuration logic block (CLB) can be
implemented (upper right). Real world FPGAs use many CLBs to
implement designs. On this chart, the interconnection manifold is
shown as an amorphous blob that encloses the CLBs. Unlike LUTs
or CLBs, the interconnection manifold often lacks the fine grain
periodicity amenable to scaleable implementation. In fact, the exact
structure of the interconnect manifold is empirically based, eclectic,
and usually highly proprietary in its specific details.

At least on a generic basis, real FPGAs implement programmable
interconnect with irregular arrangements of physical wire and
switches as shown in this figure. The specific “rhyme and reason”
for the placement of wire and transistor switches is at the heart of
FPGA design, which is largely empirically based and an art. If too
many wires/switches are used, the silicon is poorly utilized. If too

~ few, the FPGA is incapable of wiring practical designs. FPGA

designers argue amongst themiselves as to whether FPGAs should be
«LUT rich” or “interconnect rich”, which are considered in a
simplistic sense to be the two extremes. A number of FPGA
architectures, including the HP Teramac, are reported as being
interconnect rich.
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This figure illustrates the structural irregularity and complexity of a
simple FPGA design. The example shown is from an obsolete Xilinx
3020, which is a 2,000-gate FPGA (today’s state-of-the-art Xilinx
FPGAs have 1,000,000 gate densities). This quadiant demonstrates
that rote scaling of complex ICs would be a molecular synthesis
nightmare. Clearly, any real world FPGA would require a
considerable re-casting exercise to implement a molecular form.
Even this simple example of an obsolete FPGA would pose a major
challenge, and it is probably better to avid the attempt.

FPGA architectures are not deliberately complex by intent, but rather
by necessity. The reasons that architectures have complex
interconnections has already been discussed cut this figure illustrates
how interconnection complexity is manifested in FPGA architecture.
The smallest of three rectangles depicts the size required by a
specific complex digital design. The design, of course, contains
logic, memory, and interconnect. If the normally fixed logic
functions are replaced by LUTsS, then the area need for
reconfiguration storage for those LUTs is represented by the next
largest rectangle (B), about 10X the size of the first box. Though this
area represents a significant overhead, the area incurred in replacing
fixed interconnect with programmable interconnect is far worse
(rectangle C). This disparity illustrates interconnect growth ina
different form than before, only further amplifying its critical
influence on architecture.

(Note: Andre DeHon, who created the original of this figure, says
this must interpreted with caution. I originally thought that it implied
that an FPGA requires 100X the real estate of a full custom design,
but he indicates that this is not fundamentally a correct
interpretation).
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The molecular FPGA structure’s periodicity has other obvious but
interesting properties. One of them is translation invariance. This
figure illustrates a simplified design implementation. The user
design (upper left) is first a re-cast in terms of LUTS through a
process known as technology mapping. This process is used ,
commonly in gate arrays to map a starting design into cell libraries
for a target VLSI process. In this case the cell library is a single
entity (the 3LUT). From here, the abstracted design is physically
located into the tile and interconnected through the process of
placement and routing. This figure demonstrates both design non-
uniqueness in terms of the five "isomorphic" implementations and
translation invariance in the three CA-based implementations.

This implementation flexibility can be used to circumlocate around
defective LUTSs. This figure illustrates an implementation over a
defect (left), and the resulting impact zone (dotted lines)
compromises two output functions (bottom row). The defect in this
case is easily “skirted” by reprogramming the LUTs in the vicinity of
the defect (right), thereby recovering use of the surrounding LUTs to
yield the desired functions.

It is possible to directly describe silicon versions of this type of
architecture. The LUT is principally independent, and it could be
implemented in conductance modulated molecular gates, quantum
dots, and of course silicon. The silicon implementation provides a
simple way to study example architectures. For example, it is
possible to implement 200,000 3LUTs, each of which represent a
100-transitor module, in a 0.25 micron VLSI process. An example
architecture could be implemented in two phases, using low-cost
MOSIS fabrication runs (~ $1K/mm? for 25 samples). The first pass
feasibility IC would establish basic feasibility (2mm X 2mm ~ 20K
gates), while the second run would build a more serious prototype (~
1M gate).
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The actual implementation of a 3LUT is straightforward in silicon or
other technologies, provided that the right building blocks are
available. This figure illustrates two implementations, based on
pass-gate (left) and logic gate (right) approaches.

While the FPGA template described up to this point is an important
and fundamental structure, it must be augmented in order to form a
complete device by including: (1) feedback and (2) user memory.
These features could be incorporated by using more sophisticated
LUT arrangements, but this approach creates drawbacks that are
beyond the scope of our present discussion. Rather, it is suggested
that the LUT tiles be arranged and juxtaposed with other structures to
achieve the desired effects. This figure illustrates a two-tile structure
in which the tiles are directed in opposition. They are not directly
abutted, but rather they are joined to a common articulation structure.

This figure illustrates the specific arrangement of how the “dangling
bonds” of the LUT tiles intercolate the register structures. This
configuration allows for a simple scheme that is capable of
implementing clocked-mode sequential designs, such as state
machines.
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The LUT tiles are analogous to blank memories, tapes, etc., in that
they cannot perform any particular function until programmed. This
figure illustrates how a configuration chain can be established
through a LUT tile to accomplish this programming. It pre-supposes
that the LUTSs are based on shift registers. The configuration chain is
only an accessory system for programming, and these links are
normally “invisible” with respect to the normal operation of the tile.
The particular chain pattern shown is actually an obvious but very
bad choice for the programming configuration, since it is vulnerable
to single defects that could cripple the configuration process,
rendering an entire tile useless (better configuration chains were
described in the Dec. 99 report).

As an illustrative example that is partly digressive from the singular
pursuit of a molecular architecture, we outline a gigascale
architecture testbed proposal. This activity represents a possible
track to implement the cellular FPGA on a somewhat massive scale,
but based on realistic implementations involving 0.25 micron CMOS
and a paper-thin form of High Density Interconnect (HDI) multichip
module (MCM) technology. In three passes, this prospective
program would implement a one billion gate demonstration vehicle.

The MCMs in this scheme would collect together a checkerboard
pattern of cellular FPGA chips, each of which itself contain a number
of tiles and register-intercolation structures. In this embodiment, the
ICs would be equipped with a perimeter array of input/output (I/O)
“alligator clip” termini at a very aggressive pitch (one ever 25
microns). The MCM would employ a nearest-neighbor connective
pattern, characteristic of the lower levels of the tile design. Itis
expected that these connections can be accomplished with a single
metal layer (metal O).
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This chart illustrates that the “alligator clip” connection is very
coarse. On average, at least two LUTs will be contacted by one bond
connection. Furthermore, a lot of LUTs in the perimeter zones will
be missed altogether, which mimics the way that a molecular tile
would be connected to the outside world. The demonstration would
show the potential of the architecture to be assembly tolerant.

The prospective VSLI implementation will ultimately mimic a 3-D
embodiment of the FPGA. Achieving this will require paper-thin
layers of 2-D circuitry. This chart illustrates a pre-thinned but
finished MCM. A sacrificial substrate is employed, and it will later
be ablated away through a back-grinding process.

The principle of a paper thin HDI was proven possible in 1998 in an
independently funded demonstration through AFRL.

The modules in preparation for stacking are interconnected. The
interconnection at this level only binds together chips within the
same circuit plane. The assembly is then thinned from 1,500 micron
to about 50 microns.
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“The demonstration system is based on densely stacking a number of
dense circuitry planes. The novelty of this approach is based in the
_ idea of penetrating entire MCMs with commnective vias to electrically
bind the layers together vertically, producing a unique 3-D
interconnection approach that does not require a true 3-D-IC
approach.

Thinned circuit planes are next stacked one-by-one. As each MCM-
plane is added, an additional dielectric layer is laminated onto the
emerging stock. A series of vias are formed to “stitch” each new
layer to its nearest neighbor in designated points, which in effects
implements a full 3-D scheme.

The process is relatively low temperature, and residual stress is
balanced by the reinforcement of added layers. This figure illustrates
a number of stacked layers. The only apparent limitations pertain to
fixturing.
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A VLSI implementation would expose other real world issues, such
as power delivery and thermal management. The ad hoc VLSI
implementation may require the insertion of heat spreaders for
example. The operating frequency limit might well be thermally
dictated.

“Heuristics” refer to approaches that produce good results on
average (but not necessarily optional). We accept sub-optimality in
exchange for rapid solution time. A rich body of knowledge has
evolved over the last 15 years in electronic design automation
(EDA). We would like to use these directly if possible on molecular
architectures. Other than sheer scale, the principle has merit, but the
new architecture is different from standard FPGAs. As such,
allowances must be made to accommodate the unique aspects of the
molecular FPGA. At the same time, we speculate that the
differences might be exploited in new algorithms that actually work
better for molecular FPGAs than for other FPGAs. Results are
presented to bear these points out.

Self-test in the molecular FPGA has been given only scant mention,
but it should be clear that self-test is actually simplified for a regular
architecture. It is possible moreover to harness this architecture and
its resource to accelerate self-test and fault diagnosis. By using
virtual wires, pattern generation algorithms can be devised to rapidly
expose defects. Based on a fault signature, a supplement test
configuration can be gerierated to further “zero in” on particular
defect regions. Such methods are reminiscent of binary search
algorithms, which operate in sub-linear time. Further exposition of
these algorithms remain the subject of future progress reports, in
which we hope to conclusively dispel any doubt as to the veracity of
these claims.
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The standard algorithms for routing FPGAs must be adapted slightly
for molecular FPGAs, as shown in this chart. The left figure
illustrates a contrived routing problem on a small LUT tile. The
center figure shows a result using a simple greedy algorithm (based
on Dijkstra’s shortest path method). The result is unfortunately
incorrect, as the highlighted node in the center figure appears to
connect but in fact is a dead (not defective node). A slight “manual
shove” produces a correct result (right figure) in which signals 3 and
5 intersect (such as “OR”). Such adjustments are simple in principle
but uncommon in traditional tools. '

The remainder of this report describes preliminary work on
exploiting neural nets in a new heuristic method for circuit design
with molecular FPGAs

It can, for example, be shown by combinational analysis that LUTs
can be modeled with neural nets. To do this a simple perception
network containing a single hidden layer is employed. The hidden
layer contains the same number of neurons as the arity of the LUT
being modeled, and the hidden layer is fully connected. For
example, a 3 LUT uses three neurons in its hidden layer. The
example shown models a SLUT. In any case the hidden layer drives
a single output neuron. To convince ourselves the approach works,
we conducted brute force simulations on all 255 cases for a 3LUT
and its corresponding neural network.
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Neyral network circuit designer

By simply replacing each LUT if a molecular FPGA tile, we can
directly form a structured neural network capable of mimicking
anything that the original network can do.

Given this model, the concept of training the neural net to design
circuits appears to be straightforward. The process involves creating
a training set based on the logic functions that are desired. This set is
used in conjunction with a standard back-propagation algorithm to
adjust the neuron weights. Then, the same training patterns are used
to test the circuit formed. The process of training and testing are
repeated until convergence occurs (or you get tired).

This figure illustrates the design system implemented. Convergence
is defined as a test set that produces no classification errors.
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A number of examples were tested, and in a nutshell the approach
works. The example shown here is a neural net design of a 2-bit
binary multiplier. The results are non-unique and non-optimal, but
they work. This statement begs the question: “What is good
enough?” In VLSI, for example, optimality is usually defined in
terms of circuit size or speed. Here, since the tile size is constant,
any convergent solution is the same size. Furthermore, any solution
propagates through the same number of LUTs. Hence, all solutions
are essentially equivalent. Still, the neural net produces very odd
results, like those produced by a drunken designer. Some clearly
spurious signals are produced, but they do not alter the enheuric
validity of the solution. It is likely a simple exercise to post-filter the
neural net solutions so as to remove non-sensical constructs.
Furthermore, the use of other iterative improvement techniques (e.g.,
simulated annealing) could be considered if there is a benefit in
doing so.




AFRL joins NRL's team in the supporting capacities of architecture, packaging, and
interconnections. We describe a seven-level hierarchical architecture, based on modified version
.of the DARPA-sponsored AFRL Phase 1 architecture. The architecture is specially adapted to
NRL's viral scaffolds. Based on properly harnessed properly configurations of these blocks, an
end-to-end picture of a terascale molecular system can be developed, capable of supporting
almost arbitrary digital system implementations. In this discussion, we further turn our attention
to the equally significant challenges of interconnections and packaging and outline our proposed
molecular chip scale package (MCSP) based on a merging of advanced transition interconnect
structures. :

“Outside world” micro-ball grid array

Level 7 - Macro/meso-connect

Level 6 - Meso/micro-connect

Level 5 - Active micro-substrate
Level 4 - Micro/nano-connect

Level 3 - LUT tile-complexes
Level 2 - LUT tiles

Level 1 - Viral nano-blocks
Level O - Molecular electronic

Devices

XN/

Figure 1. Hierarchical architecture for NRLAFRL molecular electronics approach.

AFRL defined a basic set of architecture principles and concepts for molecular electronics in the
first phase of the DARPA Moletronics program. Not surprisingly, we propose here a core
architecture approach based on defect-tolerant, assembly-tolerant periodic aggregations . of
fundamental nano-scale building blocks, namely those scaffolded onto the viral host structures,
or viral nano-blocks (VNBs). The key constraints necessary to establish a viable system are
summarized and prioritized as follows:
e An electrically viable signaling system in which inputs of VNBs are compatible with
outputs of other VNBs (critical);
e The availability of 8-12 terminal sites on the VNBs to serve as primary nano-modular
input/output (/O) for signal, clock, and power distribution (high);
e The ability to effect causal or polarized arrangements of VNBs to establish feed-forward
networks (for example, it must be possible to avoid connecting the outputs of two VNBs
together that may wish to drive incompatible signals) (high);
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e The ability to control to (within at least 10-15%) the number of rows and columns in a
block aggregate ("tile") (high);
e The ability to introduce a minimum of two different engineered viral structure types, one
being a logic compute type (such as a look-up table) and the other being a data
storage/buffer type (such as a D-type
flip-flop) (high);
e The ability to attach to a unifying
substrate which could serve as a global
A clock and/or power and/or signal
distribution system (medium);

» . AFRL will work closely with NRL to co-
engineer the viral nano-blocks to establish these
and other derivative properties necessary to
support computational architectures. It is

Figure 2. Reference design of two-input look-up possible to consider two- and three-dimensional

table (2LUT) based on elemental shift-register arrangements. VNBs appear more natural as 3-

memory cells and controllable switches. D building blocks, a principle we discuss later

Switches are closed when Boolean variable . .. . .
beneath is egal to logical 1! for engineering interconnection manifolds.

Confining for the moment the discussion to molecular planar assemblies , it is necessary to
consider a modification of the Phase 1 cellular architecture. Here, we consider a case where two
independent look-up table (LUT) structures are engineered into the same VNB. A reference
two-input LUT (2LUT) is shown in Figure 2, based on a molecular memory and molecular
switch. It is important to note that the 2LUT is an example of a computational block that is
capable of universal digital implementations, but it is not the only one. Furthermore, the Figure
2 symbolic representation is but one of several embodiments.

The use of VNBs as a host of a dual-input 2LUT logic building block is illustrated in

Figure 3. It is necessary for planar arrangements to exploit dual-2LUTs since crossovers are
necessary in digital design and 2LUT structures permit the definition of a crossover as a virtual
wire. Simple examination of a candidate functional implementation using a VNB-based tile
demonstrates the need for crossovers in even the simplest functional mappings.
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A collection of VNBs arranged in a periodic and
compatible manner form a tile. If the molecular
scaffold of a VNB can be thought of as a level 1
assembly, the tile would be a level 2 assembly.
Such level 2 assemblies, if large enough, can
compute any spatial digital function.  This

capability, however, is not sufficient to

accommodate complex digital functions, such as
finite state machines. For these reasons, it is
necessary to consider a level 3 structure referred
to as a tile-complex. Tile-complexes consist of
two or more tiles in which loop paths exist. Such
loop paths can support the history-dependent
operation, which is basic to complex (sequential)
digital system implementations. Tile-complexes
for planar VNB arrangements are somewhat more
involved than the previous  (abstract)
embodiments of this concept, since a 45 degree
rotation is imparted to establish the appropriate
directionality in the tile (Figure 5).  Tile-

Figure 3. Mapping elemental computation
functions onto viral nano-block (VNB) and
target arrangement for self-assembly.
Molecular devices are "wrapped" onto a viral
structure (a), specifically a dual, 2-input look-
up table (2LUT) (b). A planar symbolic
representation is shown in (c). These VNBs
would be self-assembled into a planar
periodic lattice, as shown in (d).

Figure 4. Example
function implemented
on planar VNB-based
computation
structure.

complexes, in this sense, require the ability to control self-assembly in
ways needed to realize structures such as those shown in (Figure 5).
Establishing the necessary shape aspects for efficient computation will
be necessary, and we suspect that "taller diamonds" will be preferred to
wider ones due to the implied greater supply of virtual wires for creating
functions based on a smaller set of input signal / variables. "Wider
diamonds" on the other hand allow larger numbers of input signals, but
do not permit extensive co-mingling through virtual wires owing to the

"cone of influence" phenomena identified in the Phase I program.

To this point, it has been possible to discuss three levels of an
architectural hierarchy by focussing on a single VNB. Strictly speaking,
simply juxtaposing tiles to form tile-complexes based on one VNB may
be sufficient to permit the definition of computation structures.
However, even with molecules, using several VNBs to form a single
memory bit in a user design will result in poor spatial efficiency. As
such, we will recommend the development of a number of supplement

VNBEs, such as a storage VNB, which will essentially implement user storage. As described in
the Phase I proposal, these storage VNBs would be attached between the tiles of tile-complexes.
Another VNB is necessary to support LUT configuration (programming) through serial scan
chains that exist in each tile, formed in a similar arrangement to the LUTs themselves. This
particular concept (Figure 6) calls for a two-layer VNB system. The first layer would be
comprised of tiles and tile-complexes to support logic and memory operations as described. The
second layer, however, would implement the functionality necessary to select and configure any
of the LUT devices. Since it follows the same planar connection scheme as the LUT device
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"underlayers", it is possible to explore a rich variety of configuration systems ranging from serial
scan chains to crossbars, and concepts that are in essence a blend between the two schemes.

. Defect overhead and identification. Since the architecture is derived from the original LUT-
based concepts introduced in Phase 1, defect tolerance is handled in much the same manner. In
this case, both functional programming and defect circumlocution are handled by redefining the

Figure 5. Tile (left) and tile-complex (right) corresponding to
level 2 and level 3 of the viral-structure based physical
architecture hierarchy.

implemented with the molecular circuits.

behavior of LUTs in the neighborhood of
each defect. Since defects displace the
definitions of LUTs, the displacement

' represents overhead. For small numbers

of defects (4%), it appears that for non-
critical path designs, no more than 25%
overhead would be required, less if we
assume some clustering of defects. More
exact estimates are not analytically
possible, and one task proposed would
establish statistical bounds on these
primary defect mechanisms based on
defect location(s) and the types of designs

The defect location process involves generating simple signatures into each tile and looking for
error signals in the output pattern. The location of individual defects is like a binary search,
which is a logarithmically fast process. Once an output error is generated, a new pattern based
on the output is formed, leading to a very rapid isolation of an individual defect. Multiple errors

in many cases can be isolated faster if they are "further apart",
ined in a way that is similar to

interactive, and the patterns for isolation can be comb
superposition.

since they can be treated as non-

Performance assessment. The performance of the proposed architecture is quantified in the

following dimensions:

Propagation delay
Power consumption
Benchmark performance
Mapability performance

™~ Configuration control VNB

- N wrwe

These performance metrics cannot be closely estimated
before the specific molecular structures for a nano-block are
“ completely identified. However, it is possible to provide
rough estimates for speed and power, while outlining the
procedures to compute other performance aspects.

Figure 6. Two-layer VNB concept.
Bottom layer performs
computation, top layer supports
configuration.

Propagation delay for example through a VNB, might be characterized as tyns. Best case
performance based on time-of-flight alone through propagating along a great circle of a 30nm
sphere assuming a relative permittivity of approximately 20 would be 6.8 femtoseconds, which
would undoubtedly be swamped by the ten- to hundred-fold effective RC delay of a molecular
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circuit formed on the VNB. The fastest signal propagation across a molecular integrated circuit
would be a product of the number of tile-complexes and the tile propagation delay, factoring in
the inter-complex interconnection delays which would be contributed by the packaging
approach. This number, reciprocated, is the best case frequency performance for computations
and the highest clock rate at which any registered user storage cells could be operated.
Assuming a tile depth of 50 and tile-complex span of 20, a worst case preliminary estimate
suggests a best cycle time of about 13 GHz.

Power consumption can be parameterized by VNB power consumption. The lower energy
bound of a VNB is approximately 100 kT, given that the computational approach is irreversible'.
Assuming a 0.1% efficiency, and 10" devices with a duty factor per device of about 1%, a single
molecular integrated circuit would consume about 600 watts, which is not inconsistent with
trends in present VLSI design. Duty factors in silicon FPGAs for example, made artificially
high. For example, a pathological programmation of an Altera 108D (50,000 gate) device can
ramp the duty factor of most clockable elements high enough to raise its nominal power
consumption from 5 watts to 75 watts. In other words, modern silicon devices would melt if
they operated at 100% duty factors on average.

The benchmark performance of typical circuits and the mapability of typical circuits to the
proposed molecular architecture cannot be estimated based on physical prmc1ples as can power
and speed. For these metrics, it will be necessary to establish empirically the minimum size of
adders, multipliers, and other common circuits when these circuits are mapped into the proposed
molecular architecture. The mapability itself is a function of the heuristics used to translate
Boolean descriptions into eventually the bit patterns defining tile configurations within the
overall molecular circuit. A large part of the architecture exploration will deal with estimation
and simulation approaches relative to the map-ability and minimum size of typical circuits. If
the results for "typical" molecular circuits do not approach those of standard field programmable
gate arrays (by small constant factors), then that would indicate a fundamental flaw in the
architecture itself. For this reason, it is important to establish the robustness of the proposed
molecular architecture within the ﬁrst two years, so that work-around and augmentation schemes
can be identified as necessary.

Molecular circuit design /programming time. Programming FPGAs requires definition of a
design in an automated format and compilation of the design into a bitstream, which represents
the patterns to be programmed within individual LUTs in each tile. The simplest algorithms
poss1ble require linear time, i.e. an amount of time proportional to the number of devices, since it
is usually necessary to consider the role of each device to some degree. It is possible, when it is
known that only a fraction of devices are to be used in a given design, to devise solutions that
appear sub-linear, since non-used regions of the molecular integrated circuit can be "null-
programmed". Heuristics refer to approaches that could otherwise take exponential amounts of
time in the worst case at the price of solution quality. Solution quality here refers to the size of a
circuit design or its operating speed. In order to provide solutions in a reasonable amount of
time, it will be necessary to consider linear and quasi-linear algorithms for the technology
mapping, partitioning, placement, and routing processes normally associated with FPGA design.
This effort will focus on approaches to speed compilation through these methods. Special
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emphasis will be placed on concurrent heuristics, which are needed for placement and routing, as
a LUT can be viewed as both a routing and a logic resource in this architecture.

Configuration time. For the proposed architecture, the programming time is Order (N /S) where
N is the number of cells and S is the number of streams. The number of bitstreams can be as
small as one, and as large as the number of LUT tiles, which is an unrealistically large number.
It is likely that the number of bitstreams can be managed as log N. Hence it could take
approximately 25 seconds to configure a 10!! device molecular architecture based on 40 input
streams running in parallel at 100 MHz (configuration speeds are usually slower than device
operation speeds).

From the PIP: Perceived advantages/uniqueness of the proposed hierarchical process.

Advantage of the proposed hierarchical system. Driving the definition of the proposed
architecture has been the quest for simplicity. Inasmuch as possible, we seek the maximize
periodicity and minimize the complexity of individual components. Departures from these
principles are sometimes necessary. For example, we cannot introduce a chip-size LUT tile,
which would seem particularly appealing, simply because a single LUT does not support logic,
memory, and feedback. We could have introduced all of those concepts into a single, super-
VNB cell, but then the resulting complexity would stifle its implementation. Furthermore, defect
tolerance and location would take on the dimension of grand challenges. Were it possible that
every look-up table could produce feedback, the existence of many millions of errant (defect-
based) feedback loops would generate excessive power dissipation and noise, raising questions
of efficacy. Furthermore, embedding user memory in every LUT would be wasteful, given the
clear signs that many LUTs are dedicated to wiring. For these reasons, LUTs are grouped into
finite tilings, and those tilings become the basic building blocks for tile-complexes. Hierarchical
levels above tile-complexes are discussed in the packaging and interconnect section of this
proposal.

Packaging and Interconnect
From the PIP:A discussion of the means for interfacing the electronic module to the outside
world, i.e., input and output schemes.

Architectures, interconnections, and packaging establish relationships between molecular
elements, their intended function, and the real world that they must operate within. Good
architectures might be judged on how efficiently these establish these relationships. While
architectures have received increased emphasis in DARPA's Moletronics program, packaging
and interconnections were given little attention by most of the Phase I participants. Even with
good baseline architecture concepts for harnessing vast numbers of molecular devices, it is
necessary to develop companion concepts in packaging and interconnection for any integrated .
circuit technology, whether silicon or molecular.
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To illustrate the problem, we note that the many Phase I Moletronics architecture concepts were
based on crossbar strategies. Crossbars arrange nano-wires in straight lines, with the nano-wires
that form rows crossing perpendicularly to nano-wires that form columns. In the crossbar, it is
presumed that a particular row and particular column can be accessed electrically to set or query
the junction that exists at the crossing, which may contain an individual molecular device. In
order to achieve high density, it is necessary that the row and column wires be closely spaced (<
200 nanometers). In fact, the pitch between row nano-wires or column nano-wires is far denser
than any accessible with micro-probes. So, in order to operate such a crossbar, it is necessary to
introduce an addressing system capable of translating physical large interconnect structures to
the smaller ones from which molecular circuits are made. In one such extreme case, illustrated
in Figure 7, the amount of space occupied by interconnections vastly dominates the area
occupied by use-able molecular electronics. The interconnections must themselves approach or

GEEL_Molecular
Electronic Device

Figure 7. Crossbar-based molecular electronics array and input-output (1/O)
geometry disconnect. Molecular devices (left) are embedded in the junctions of a
dense nano-wire crossbar array (e.g. #00 nm pitch), and an entire crossbar array is
embedded within a frame (large box) occupied by I/O structures involved with
signal fan-out to VLSI circuits that would perform decoding based on 7 micron
terminal spacing for 260 I/O total. This case corresponds to the 16,000 device case
with 130 rows and columns.

transcend the limits of lithographically accessible techniques.

Of course, Figure 7 represents one extreme, that of a large number of interconnect signals
servicing only one molecular electronics block, through terminals arranged about the perimeter
of the cell. One might rightly argue that in a complex system, many of the same signals would
be exploited by multiple molecular electronic systems similar to the Figure 7 crossbar array. It
is then possible to consider a second extreme. In this case, we consider a dense flip-chip
interconnected system. Based on reasonable extrapolations of Rent's rule, it is possible to
encounter a primary interconnect supply of 10,000 terminals /_cm2 (vs. year 2000 designs with
600-800 terminals / cm?). Even with this rich supply of external terminals, we find interconnect
starvation occurs in a dense molecular underlayer containing a large number of 840 element
blocks of molecular circuits, as shown in Figure 8.
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Figure 8. Interconnect starvation resulting from inadequate supply of transition interconnect -
from macro-to-nano scales of distribution. Left illustration is of a 1 cm? molecular integrated
circuit (IC) with 10,000 signal terminals. The signal terminals are distributed in a uniform
grid array over the surface of the IC. A close-up (right) reveals that on the scale a individual
terminals (dark circles) are associated a large number of squares, each representing a
molecular circuit containing 840 molecular devices. The number of available molecular
devices far transcends the ability to supply useable interconnect to each square.

Most other cases are intermediate points between the extremes demonstrated in Figure 7 and
Figure 8, and the degrees to which pad-limiting and interconnect starvation, respectively, are
encountered determine the compromises that must be introduce to construct a feasible packaging
approach.

We propose a molecular chip scale packaging approach, based on a hierarchical system (Figure
9) of specific interconnection structures to implement the transitions from macro-to-meso, meso-
to-micro, and micro-to-nano scale levels. We next outline the system briefly, which addresses
three additional hierarchical levels, this time from the top down.

Macro-interconnect. The highest level of system interconnect will undoubtedly be effected
through a solder-based area array interconnection. At 10,000 /O per cm?, an x-y grid pitch of
100 microns is necessary. This density of flip-chip is much higher than normally encountered in
present-day microelectronics, but not uncommon in cooled infrared hybrid focal plane array
assemblies, in which over one million I/O are interconnected at an x-y grid pitch below 37
microns. The contrast and challenges are several-fold, not the least of which is the nearly five
orders of magnitude difference in power densities between focal plane arrays and molecular
integrated circuits based on our previous crude estimates. To improve reliability and reduce the
significant physical stresses due to thermal expansion, it may be necessary to create a new type
of underfill (commonly used in flip-chip and some ball grid array approaches) and even an
improved approach for infiltration between the grid array and the next-level board assembly.

Macro-to-meso interconnect (level 7). In flip-chip systems, /O redistribution has been done
conventionally with native VLSI interconnections (Al-SiO2). At high primary I/O densities
(certainly about 2,000 I/O per cm?) the RC delays associated with native VLSI interconnections
become prohibitive, and make it necessary to consider the introduction of better signal
redistribution network. The signal redistribution network, besides reducing the "pin-to-
molecule" transport delay, will in part alleviate some of the tremendous burden of interconnect
redistribution at lower levels in the architecture hierarchy.
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The most electrically efficient conductor distribution system is formed by a multilayer copper-

- polyimide system, which offers a ten-fold parastic reduction in the parasitic RC delay when
compared to native Al-SiO, VLSI interconnections. This particular manifold would be required
to provide a physical fanout translation from a 100 micron pitch to a 10-15 micron pitch in less
than eight metal layers. It is envisioned that this would involved a graduated dielectric thickness
ranging from 37 microns on the closest-to-macro level down to about 3-5 micron thickness at the
mesoscopic level. Similarly the conductor and intermetal via geometries would taper down from
about 50 microns down to well below 10 microns, as the pitch and conductor grid densities
progress vertically through this multilayer system. The relative permittivity of kapton, being
about 3.2 to 3.5, may marginally be adequate, and the possibility of introducing
benzocyclobutene or other low-Knaterials will be explored for further transport delay

reductions.
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Figure 9. Hierarchy of interconnect structures to transistion from macro-to-nano scale levels.
- The diagram is not to scale.

Meso-to-micro interconnect (level 6). It is necessary to exploit the world's most fully
developed interconnect system, that of advanced VLSI, through which it is possible to consider a
200-500nm distribution grid in less than 12 layers. Even with the use of a pre-cursor
redistribution manifold for the primary I/O, it may still be necessary to exploit the best
technologies available within the four year span of this phase of the Moletronics program to
avoid interconnect starvation, which translates to maximum interconnect length of 5-10
kilometers based on minimum linewidth-space configurations.

In order to exploit VLSI in this capacity, it is necessary to hyper-thin silicon or remove the
silicon underlayer altogether. The latter approach is technologically easier, but eliminates the
important possibility of harnessing active silicon in a supporting capacity to the molecular
circuitry at the bottom of the hierarchy. Hyper-thinning can be accomplished most readily by
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exploiting silicon-on-insulator (SOI, dielectrically isolated) wafers in an advanced fabrication
process. At least SOI process (Peregrine Semiconductor) is economically available through
MOSIS multi-user fabrication runs (4/year). Once an interconnection system is formed onto an
SOI wafer it is possible to use industry standard wafer backgrinding (500um down to 125-
150um) and CMP approaches (150um down to 25um) to remove most of the substrate bulk,
followed by a XeF, sublimination, which selectively attacks silicon preferentially to SiO; by a
factor of about 100,000. The SiO, may then be removed through HF etch, leaving a thin silicon
substrate (fum thick) and the meso-micro interconnection manifold. If the active silicon is not
processed in a way that permits backside interconnection interface of molecular electronics, then
it too must be removed, which can be done through the same sublimination process.

g f=l=1= - .

igooo Active silicon mlcro-!ayer (level 5). We
rocooco are compelled to consider roles and

: g g g g advantages of silicon VLSI as a supporting
oooo concept in molecular electronic systems,
fgono particularly since we must leverage and

e g ) enhance the existing interconnection
rcoon

infrastructure. We consider that advanced
‘ ‘ ‘ CMOS has at least two promising support
(2) th) () (@ roles: active buffer (for signal gain and/or

Figure 10. Micro-to-nano distribution issues. (2) inversion) and user data storage (as

Interconnection grid at 200 nm. (b) LUT tile. (c) differentiated from the configuration
Superposition, revealing an accessibility loss of less than storage used to program molecular
10%f the LUTS, but loss of 80%{ the interconnect and electronics devices). The proposed
reduction in the expressive capacity of the LUT tile by hierarchy interconnection approach, by

more than 50%d) Result of additional interconnection

redistribution network at micro-to-nano-level, illustrating erme- of the 'exp101tat10¥1 of VLSI
recovery of expressive capacity of LUT tile. interconnections, establishes a natural and

convenient place for molecular electronics.
The "catch" in this case is the need to exploit through wafer connections. Previous work on
through-wafer interconnections took on heroic dimensions, since they were concerned with
penetrating 500 micron-thick wafers. In this case, however, backside contact access is more
easily achieved, due to the readily available access to source-drain diffusions which completely
infiltrate a sub-micron thick substrate in a fully depleted SOI process.

Micro-to-nano interconnect (level 4). This
level is the most controversial in our proposed
interconnection hierarchy because its
importance depends on the nature of
molecular "underlayers" that define levels 0-3
of the molecular architecture. If it is possible
to achieve a 200 nm x-y interconnect pitch
from level 5 and above, then it is possible to
interface directly to a tile-complex, although a
: certain fraction of molecular-based nano-
blocks (level 1) will be lost due to cone-of-
influence considerations. This concept is

Figure 11. A "rats nest" representation of the type of
network regired in a micro-to-nano interconnect
distribution system.
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illustrated in Figure 10, which demonstrates that large amounts of the possible interconnection
network are not available for exploitation by the molecular VNB tiles and that while less than
10% of the VNBs are unreachable due to cone-of-influence considerations, the VNBs have
somewhat limited I/O access at the tile and tile-complex perimeters. The consequences of this
limitation are speculative. We cannot benefit from benchmark performance analysis results that
we have not yet done, and those results are necessary to make positive conclusions about the
need for such an interconnect redistribution system.

To address this problem, we propose: (1) to develop a case for whether level 4 is necessary, and
(2) establish concepts for a self-organizing distribution network of interconnections based on
VNBs themselves. In this case, the VNBs are completely specialized to perform interconnect-
only functions. The problem here can be gleaned from a 3-D "rat's nest" diagram (Figure 11)
illustrating the desired properties of the interconnection network. The principle challenges are:
self-assembly protocols (it is necessary to effect non-trivial translation structures using only
VNBs), (2) level 3 to level 5 compatibility, and (3) definition and formation of a small family of
interconnect-only VNBs.
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Figure 12. Molecular chip scale package concept.

The Molecular Chip Scale Package. Levels 4-7 of the overall molecular architecture provide an
intimately integrated chip scale package, optimized for efficient signal, thermal transport, power
delivery and molecular device encapsulation. For perhaps the first time in this program, we
present a picture of a packaging system intended for molecular integrated circuits (XXX). The
package features a housing that provides mechanical support and thermal transport through a
special form of thermal grease, formulated for compatibility with molecular electronics based on
NRL requirements. Though the need for a backside contact (for power delivery) has not yet
been established, it is straightforward to employ a conductively loaded material and establish
auxilliary connections for power. The body of the package is likely to be a carbon matrix
composite material to provide good mechanical stiffness, thermal transport and thermal
expansion characteristics compatible with the molecular electronics system. Additional border
rows would be added to the solder grid array for additional protection and improved reliability of
the package. Heat removal is accomplished through a back-side interface, providing for a
separation of electrical and thermal paths. If the power level of the component is less than 10kw,
there are extant thermal management approaches that can be exploited, albeit fairly exotic ones
at power levels above 500 W/cm?.

Even with the tremendous attention to interconnection redistribution for the molecular integrated
circuit package, the 100 micron pad-to-pad pitch will be difficult to accommodate all but the
most aggressive printed wiring board technologies. It is likely that it will be practice necessary
to introduce interposers, based on either Cu-PI or other technologies, to provide a final
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redistribution from 100 microns to 500 or 800 microns, which are more traditional (by 2005)
technologies for chip scale packages. The introduction of such interposers will result in an
increase in mounting footprint, but will improve the ease of incorporating so complex a package
into traditional electronic system assemblies.

! Landauer, "Irreversibility and Heat Generation in the Computing Process", IBM Journal, May 1961 , pp-183-191.
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Moletronics Phase 2 Architecture
In Support of CU-Boulder Proposal
dmes Lyke
November 2000
Introduction

In Phase I, we defined an abstract molecular architecture in which all logic and interconnections
were implemented with billions of look-up tables (LUTSs) connected in a hierarchical, self-
assembled array. LUTs, though a fixed molecular structure, are programmable truth tables, and
with an adequate matrixed arrangement, it is possible to literally shape more complex functions
from many simple ones. Each LUT in our plan would have been constructed by a molecular circuit
equivalent to ¥00 components and requiring 10-12 electrical nano-termini. The appeal of this
reconfigurable cellular array (RCA) approach is that it addresses certain difficulties in forming
complex systems at a molecular scale, namely low interconnection demand and defect tolerance.
Defect tolerance, for example, is addressed by changing LUT definitions to "steer" around point
defects. By simplifying an architecture as a periodic x-y grid of LUTs, we strived to identify a
system whose structure was both simple (low descriptive complexity) yet surprisingly expressive,
adequate to at least directly emulate almost any conceivable collection of combinatorial logic -
functions. With the help of multiple tiles and edge-coupled memory cells, we described some of the
extensions necessary to achieve the implementation of finite state machines and, by extensmn,
arbitrarily complex digital systems.

Our work in identifying and fleshing out the RCA concept was an unportant step in Phase I, but
even as we brought forward a promising approach, we also found in it gaps and limitations. These
limitations can be broken into three categories: (1) molecular repertoire; (2) architecture closure;
and (3) tool development.

The molecular repertoire refers to the issue of identifying a credible nano-modular cell library. In V
advanced silicon VLSI, standard cell libraries are necessary for meaningful design. These libraries
typically contain several hundred distinct cell designs. By contrast, we recognize that the nano-
modular cell libraries defined by molecules would necessarily form a much more modest collection,
hopefully less than ten cells perhaps in total. But a three-input LUT (3LUT), the centerpiece of the
original architecture, turns out to be too difficult to address as a molecular synthesis activity. Other
cell types, such as the single-bit memory cell for tile edges and cells to form address and
configuration structures were given a fairly superficial consideration. To form a tractable system, it
is necessary to define nano-modules that are not only constructible but are adequate to build an
entire architecture, even if all of those cells are not implemented as an immediate objective.

The architecture closure issue is one of establishing a complete blueprint. While some attention
was focussed on the need to form LUTS into tiles, and tiles into another assembly, and so on, many
gaps existed in completing a hierarchical picture from molecules to pin terminals of a molecular
integrated circuit. Details absent at the tile level include its correct shape and a credible
configuration system (the shift register approach could be rendered useless by a single defect).
Details absent at the next level included the number of tiles and arrangement to form a more
capable molecular FPGA section. Other details ‘that were obviously missing included
interconnection delivery to the molecular circuit elements, a means of estimating or analyzing
performance, in short an end-to-end picture of a complete molecular electronic system. While we
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had tackled one of the most significant elements of the problem, there were still many gaps in the
definition of a complete architecture. : _

The tool development problem seems a possibly second-order issue. However, without the ability
to rapidly examine test design mappings from a benchmark suite or perform comparisons against
non-molecular competive architectures, it is impossible to really quantify the "goodness" of a
molecular FPGA architecture. We can argue that a system based on an unbounded number of
molecular building blocks (even Boolean complete ones) is "good enough” to be used as a
competitive architecture only if we can prove that: (1) the widest possible class of "normal" types of
designs can be mapped; and (2) the inefficiencies in a molecular architecture do not increase with

" scale. It would not be a bad thing for example to find that a 10,000 gate molecular system is twice

as inefficient as a commercial Xilinx 10,000 gate competitor, so long as the 1,000,000 gate version
is still only about twice as inefficient. On the other hand, it would be disastrous to find upon
scaling to say 1,000,000,000 gates that we become 100X or 1000X less efficient than that future
Xilinx billion gate competitor. We would in effect be saying that molecular electronics based on
such approaches are a losing proposition.

In this Phase II proposal we are "raising the bar" for molecular architectures. Even as it is
necessary to define a viable 16,000 element demonstration, it is equally necessary to build a
believable story for the scaling to a system vastly greater. Our proposal addresses the three issues
raised previously and brings forward a fully specified framework for a 16,000 element system as
well as a scalable architecture, extensible to well beyond the 100-billion element target of the Phase

2 program.

We outline here the most significant advancements proposed for further development in the Phase
I program based on extensions and maturations of the Phase I architecture, a number of which are
subsequently exposed in more detail: .

e Even though the advent of the proposed molecular transistor will enable more robust
synthesis strategies, we are compelled to reduce to the simplest possible terms the former
3LUT building block system. In its place, we introduce a 2LUT architecture that we
previously thought impossible. If that were not enough, we have identified a still simpler
building block, based on the conjunction of 1LUT structures, in our quest for the simplest
possible building blocks for Boolean-complete systems

e We will use nano-wire crossbars to configure the LUTs in the demonstration system (vice
the previous shift registers), complemented with two striking new concepts in address
decoding that may conquer at least one of the interconnection fan-out problems that exist in
the transition from nano-scale to macro-scale. '

e We will formalize the file-complex concept for the scalable system. Tile complexes are
based on a number of connected tiles, which will require the development of additional
structures to support selective termination, connection, and configuration. This hurdle
allows for one additional hierarchical level to be specified, which represents an important
capability transition beyond the simple tile strategy that we plan to reduce to practice in this
program.

e We will formalize a range of associated architecture concepts, tools, and strategies

" necessary to achieve a practical architecture, such as the defect spectrum and parametric
propagation delay and power consumption. These concepts will permit more optimal
engineering of the molecular architecture for tolerance to some defects and resilience to
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others. The parametric performance analysis framework will allow performance projections
for scaled systems based on the results for single devices and small ensembles.

e We will develop a suite of tools for compiling Boolean descriptions into molecular ones,
which will take tolerable defects into account, including linkages to a major commercial
computer-aided design (CAD) tool. 4 :

e We will develop a comparative benchmark program to compare the performance of our
architecture against commercial architectures to assess the efficiency of the architecture.

Detailed Description of Architecture

LUTs are key for molecular architectures, as they demonstrate basic logic and simple arithmetic
operations. In fact, an m-input LUT (mLUT) is capable of reproducing any of the 2(2 ™) truth
tables that exist for an m-input Boolean function. While the Phase I architecture was based
strictly on 3LUTs, we have found that two simpler approaches exist. The first is based on a
2LUT, the second on a 1LUT tile.

The 2LUT nano-block would
have always been preferred to a
3LUT version, but we did not at
first perceive that the simpler
tiling approach outlined in Figure
1 was possible. The
interconnection topology has been
referred to as an x-grid [1], and
appears to be equivalent in its
Figure 1. Reconfigurate cellular arrayarchitectures-bsed on (a) expressive capacity, though it
three-input and (ptwo-input look-up tales (LUTs). obviously takes a greater number

: of 2LUTs than 3LUTSs to emulate
the same function, as shown in Figure 2. Based on this equivalence, we propose the 2LUT x-
grid system as the primary tile structure.

Even the 2LUT structure is a considerably complex
challenge as a single synthesizable molecular circuit; two
symbolic embodiments are shown in Figure 3. For this
reason, we have identified a much simpler structure, which
appears to be similarly capable of universal Boolean :
representations. The 1LUT (Figure 4a), capable of expressing SRS S B «le .
only four Boolean functions, appears to be of little use and has Figure 2. Demonstration of how
never received any attention in literature. If we add a 2LUT and BUT tiles can
molecular resistor, however, to the 1ILUT (Figure 4b) and implement more complex function,
allow two or more such structures to self-assemble such that ™ this case the majoritfunction.
they join at the far end of the resistor nodes, we form the In the majorityunction, fis egal

to logical one if and onlyf the
structure shown in Figure 4c and Figure 4d. This structure,  majorityf inputs are also eqgal to
though having the same number of inputs as a 2LUT is not logical one.
equivalent to a 2LUT, even though both structures require '
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four memory bits and can therefore implement 16 functions. But, as we know that the NAND
gate is capable of implementing all Boolean functions, it is easy to show that, given enough of

e the Figure 4c structures, it is similarly possible to

a 13 13 implement all Boolean functions. A simplified tile,

. . Lo P reflected in Figure 5 can therefore be formed by replacing

b ¢ /g |b all 2LUTs in the Figure 1b grid with Figure ¢ structures.

ia We provoke an obvious question: why not use NAND
f : gates if they are "uiversal" Boolean structures? The reason

Figure 3 Two gate-leel ‘ NAND-only networks cannot suffice is due to the lack of
representations of a 2LUT. agility in specifying their interconnection. By contrast,

our RCA architectures overcome this limitation by
permitting LUTs to be defined as interconnect. In

principle, it would be possible to form a degenerate |~ w
NAND-and-interconnect-only LUT structure, but
we have every reason to believe that the resulting out our
structures would be at least as complex as the

)

proposed 1LUT structures.
@ © @

The tiles as a computational fabric, Figure 4 Nano-module bilt from suinano-
. . ; . modules. (a) 1LUT as the most triial look-u

The mvanar_lt among any RCA structures is the tate. (b1LL§T)terminated with a molecular P

assumed periodic arrangement of LUT nano-blocks resistor. (c) A target self-assembyof "sub

into feedforward networks that we call tiles. The nano-modules" to prcduce a simp]er 2-input

tiles in Phase 1 assumed a shift-egister based nanomodule (as compared toa 2LUT). Logical

configuration system, whereas the current proposal egialent.

is based on a cross-bar system. In this case, the four

memory cells required for each LUT structure is

mapped spatially on an x-y grid, which could be considered a scaffold. These scaffolds (Figure 6)

consist of orthogonal nano-wires containing a single molecular memory bit at each intersection.

| ><; Since four sites are required for each LUT nano-block, the periodic
selection logic networks and interconnections that form the Figure
5 structure are formed through a self-assembly process onto the
Figure 6 scaffold. Two concepts for populating the scaffold

>< through the self-assembly of nano-blocks are shown in Figure 7.

Here, dual nano-blocks referred to as "bowties" are shown in
Figure 5. Tile structure bsed different possible attachment orientations, each of which span
on 1LUT-hylid . eight crossbar memory sites, corresponding to the storage

requirements of two LUT nano-blocks.

The tile structure for a 16,000 element system would contain
as many as 128 rows and columns. In order to access any
particular memory location, it is necessary to provide
contacts to the appropriate x-y nano-wires. For the 16,000
device system, this will be done with test probes. Even
assuming very aggressive micro-probes, the input/output
footprint for accessing the LUT tile configuration memory
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Figure 6 Nano-wirefmolecular memory
crosshr structure, used as an underiagr
for tiles of LUTs.




without some form of address decoding is extremely pad-limited, as shown in Figure 8.
Address multlplexmgﬂecodmg The introduction of address decoding, which can reduce the

¥ Y ki
Figure 7 Tile population strategies, in
which dual-LUTs ("bwties") are self-
assemted onto the configuration
memonhilt into the molecular crosshr
scaffolding.

But as with the RCAs themselves,
necessary to rethink the strategies underlying things that we
It is here that a well-known, unusual
property of cellular automata -- that of complex behaviors

take for granted.

o |
~ B EE B0 E G- BI616
Ackiresniory e loghcal struskire

I P PR T

i ik 5

Addresa pess and bR Eosa

Figure 9 Standard address decoding
approach (top) Large scale memory
(40 "us). (center) Lexicographic
ordering of addresses for column
selects. (bttom) Oerlayf address
lines onto decoder structures.

number of external input/output terminals dramatically
(log:#0), will be necessary to make molecular electronics
schemes involving crossbars tractable. The problem in
implementing decoding schemes is that they often require
complex structures to uniquely map a particular nano-wire
to a particular address. An idealized address decoding
scheme is illustrated in Figure 9. Under such a scheme, a
relative small number (n) of addressing lines can
unambiguously select any one of a large number 2" of
nano-wires. A simple examination, however, of the implied
decoder structures to produce standard orderings are quite
involved, and how to produce rich descriptive structures
with molecular building blocks seems to be as difficult as
any other complex structure, and certainly more complex
than creating any nano-blocks described previously.

it is sometimes ;

being produced by
simple structures-- can
be exploited. For
example, an exclusive-
or gate, when
replicated as an x-y
network as shown in
Figure 10, can with
very simple boundary
conditions generate a
non-trivial pattern that
essentially creates the well-known Sierpinski fractal gasket
pattern, in which a very long, deterministic, but non-repeating
sequence emerges. The fact that the pattern is non-
lexicographic seems disturbing at first, but if in fact the
pattern of generation matches the pattern of decoding, then it
is in fact possible to harness such schemes. The simplicity of
such an addressing scheme is dramatic when compared to any
conceivable scheme based on normal ordering approaches.
Once again, the simplicity required in a molecular
architecture motivates our consideration of things that might
not make a lot of sense in traditional VLSI approaches.

Figure 8 Pad-limiting due to fan-out
regirements of 1000 element
molecular tile without address
decoding (left) and with address
decoding (right), bth bsed on 5
micron prob pitch .
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The tile-complexes,

~ Tiles will not define a complete
architecture solution, as they can only
represent combinatorial elements of
digital systems. As identified in Phase
1, it is well-known that complex digital
systems require the introduction of state
feedback, and state preservation is done
in memory structures. Since the target
16,000 element demonstration is a
complete tile, the construction of a tile
complex is beyond the scope of the
current program. However, without the
tile complex and other levels of the
architecture hierarchy, scale-up to 10"
elements is impossible. We will explore
two approaches for the tile complex.

In the first approach, we specify
tile arrangements such as the one
illustrated in Figure 11 as a second
hierarchy level above the simple LUT
tile structures. To implement this
particular strategy will require: (1) the

introduction of a flip-flop type
nanomodule and (2) the ability to effect
oppositional tile self-assembled
arrangements.
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Figure 10. Demonstration of the use of simple, iterated
structures to produce complex patterns, in this case a
compact, non-lexicographic address decoding sgtem. The
pattern produced resemtes a fractal Sierpinski gasket
structure.

An alternative approach, which simplifies the molecular synthetic work, would involve the
harnessing of silicon as a smart substrate. In this approach, the nanomodules are self-assembled
into tiles (as before), but the tiles are attached to a VLSI substrate in a homogeneous fashion. The
substrate contains: (1) the flip-flops built in VLSI and (2) an automatic feedback routing system that

a8 [

Figure 11. Tile complex produced iihe
juxtaposition of two LUT tiles. Such
hierarchical assemties of tiles are regired
to express the feedack and state bhaior
tpical in complex digital sytems. Close-up
details the interconnection scheme btween
tiles.

guarantees the possibility of generating feedback
behavior. The approach, shown in Figure 12, has a
number of intrinsic advantages over the Figure 11
approach in reducing the burden upon self-assembly at
higher levels in the architectural hierarchy. The
involvement of advanced silicon as a hybrid approach
is a very important theme, as we suggest in the
formation of bridging interconnect to the "real world",
which will be discussed next.

Defects are not simple; there is actually a spectrum of
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potential errors to accommodate, from the static manufacturing errors referred to as "defects" in
the BAA, to more transient thermally-induced "faults", as well as cosmic-ray damage and so on.
As the computatlonal array size grows, the burden of error tolerance can be expected to grow as

MOLECULARTIES  WISIUNDERLAYERS

Figure 12. Hkid molecular /VLS! approach to form
tile complexes. In this case, VLSI oerlay are used

to implement memonflip-flop /routing structures.

The memongstructures oerlap such that three sets of
the flip-flopfouting structures are implemented at any
gien point. The three are sinblicallydecomposed,
illustrating the resulting feedbck paths formed. Such

a sgtem eliminates the need to oppositionallyarrange -

tiles in a self-assemted grid with the intercolating
memonstructures shown in Figure 11.

well, for the same desired level of
functionality and reliability. We will
categorize these error modes, and incorporate
strategies to handle them into the scalability
architecture.

It is possible to regard a defect / fault
hierarchy. There are for example order 0
defects (e.g., LUT stuck-at-zero). Such
defects are easily dispatched with our
circumlocution scheme. We can regard order
1 defects like a bad row or columnar nano-
wire(s), which could have a devastating
impact, as sections of a tile could be rendered
useless. Then there are order 2 defects such
the configuration bitstream shift register (if
shift registers are used), which would render

‘entire tiles useless. Then there are order 3

defects, such as an electrical short defect
across the power plane (if the power
distribution is not done carefully) or clock
distribution faults which would render
possibly entire molecular IC's useless.

Each class of defects may have a number of
manifestation modes and solution approaches.
We have to guarantee that the margins are
there to preclude order 2 defects altogether.
As we go down the "hierarchy" of defect
classes, we can tolerate more defects, so we
would get down eventually to the order 0

defects and would find no problem in tolerating for the most part single digit to low double digit
defect percentage rates. We would, however, like a defect rates in the low ppm for order 1
defects, a few ppb defect rates for order 2 defects, and absolutely zero order 3 defects. Or rather,
what the silicon industry calls "yield" would be comparable to the rate of order 3 defects (maybe
<4$%). Our engineering protocols would call for adding redundancy to those mechanisms that

are responsible or contribute to order 1-3 defects, or shifting into high-yield processes. It is clear
based on at least informal discussions that the silicon industry adopts practices like these to
improve yield. We want to absolutely minimize all but the order 0 defects, and we would like to
keep those down to a manageable number ( say < percent of the LUTs have such defects on

any given tile).
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Even this discussion addresses but one dimension of defects, namely static defects. Dynamic
defects, those which crop up after fabrication, are more involved, and deal with the reliabiilty
mechanisms mtnnsw to molecular electronics. In our work, we will attempt to outline a scheme
capable of dealing with dynamic
defects, but we fear that such a
system, which could address defects
in order (1) time, could have a
tremendous overhead penalty (e.g. >

0,
' ’_" A2laret sy o b B Finally, there are the defects in the
e design process itself. The software
oo offety kit ks - s, meser i s programs you use right now have

A TR T CORRALY USIRE I TG I S ed Biess vaawiia
Figure 13 Inerted interconnection manifold bsed on
harnessing bth sides of a VLSI subtrate. The VLSI circuit is

bugs in them. Design rectification
refers to the process of fixing

formed in a fullydepleted silicon-on-insulator (SOI) process problems in post-fabricated circuits
using source-drain diffusions as interconnect attach points from due to bad designs. Fortunately,
bth abe and blow (regires a release process which reconfigurable circuits such as
eliminates the blk silicon). The VLSI circuitrycan b actie FPGAs pretty much eliminate these
(for the formation of memorircuits) or passie (source problems. Specifically, while we

diffusions only can't guarantee circuits are designed

properly, we can reduce the penalty
of fixing them once the design problem has been identified. Without reconfiguration, you would
have to throw away the ch1ps and supply new ones. This is a fairly non-trivial consideration
when dealing with 10 ' devices per chip. Software design is for example obviously imperfect.
A quick websearch reveals that a reliability measure of the best software has defect rates of about
0.1 per 1000 lines of software (http://www.softrel.com/serv03.htm). This is about 100 ppm.
Since high level hardware design is done with software languages such as Verilog or VHDL, we
could expect comparable results. Estimating that one line of Verilog / VHDL equals one
hundred gates (very conservative) reveals that designed-in defects could occur at rates as high as
1 ppm. As such, we can bet that a one billion gate (assumes 100 devices per gate, very
conservative) system would ship with at least 1,000 defects, emphasizing yet another benefit of
reconfiguration, which can eliminate such errors when discovered through reprogrammation.

Findine defect
Defect search strategies are based on the isolation of behavior abnormalities generated in response
to test patterns. Cellular automata, which establish the basis of the architecture, has many strengths
in defect discovery, since rules produce patterns that can both highlight gross defects, or can
establish signatures useful in defect location. When defects are located, they can be captured in the
graph structure of the molecular architecture. This graph structure is simply a node/vertex
representation of the LUTs in a form similar to that used in FPGA design tools. Since all Boolean
logic and routing structures can be concisely represented in graphs, so too is it possible to represent
the molecular FPGA as a graph, from which nodes representing defective LUTs can be removed.
The notion of using cellular automata for self-test is a powerful one [2], and they have been
proposed as a supplemental diagnostic aid in other systems [3]. For our architecture, defect
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discovery, in its simplest form, is demonstrated in Figure 14. In this sequence, we show the
patterns produced by a perfect tile of 966 2LUTs vs. that of a tile with a single defect. This very
simple isolation sequence is based on the use of a single, homogeneous behavior impressed
simultaneously in all LUTs. We first define the entire tile to behave as a vertically directed
virtual wire, and a defect would appear as a transmission failure. Clearly we can isolate the
defect in one step to an ambiguity group of a single column (46 LUTs). The application of one
other homogeneous function (rule #) further reduces the ambiguity group to one of two possible
LUTs. It is straightforward to use another single heterogeneous programmation to isolate the
single defect. A similar process can be implemented on multiple defects. In fact, we assert that
the worst case isolation of estimate for the time to find M defects is order T’log(N), where

M is the of defects, N is number of LUT cells, and T is the amount of time necessary to generate
a new bit pattern given knowledge of which zone is next based on a binary search process. T is
itself Order (N) minimally since each of the N cells must be programmed, therefore the time for
defect location is O(NKIog(N)), neglecting speedups that can result from (a) improved
parallelism in bitstream delivery and (b) opportunistic intersection of multiple defects. The latter
effect occurs due to the likely fact that multiple defects are encountered during the fault location
process, which could reduce the number of location cycles.

Even though the bounds for error location are reasonable, we can further improve upon, at the
expense of additional hardware. Briefly, if we equip LUT tiles with a "broadcast programming"
facility, then we can in fact execute the isolation steps shown in Figure 14 as single cycle
operations, leading to the suggestion that it is possible to speed defect discovery to Order (M).
This indicates that it is possible to find defects in a time comparable to the number of defects that
exist in the architecture. The "catch" is that it will require supplemental hardware (with an
overhead of 50-100%), though this hardware is still compatible with the present molecular
architecture framework.

p ino the Archi

Programming the architecture is broken into the times required for compilation of a design
into bit patterns (to be fed into particular LUTs) and the time required to download a bitstream into
molecular system (the actual transferral of bits into LUTs). '
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mapping designs from
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problems (at the expense of solution optimality) in a
itive for a system with more than one billion

ration. It is through heuristics that we gain an apparent
). For a molecular architecture, where N is the number
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often good enough but not the best possible answers.

The programming time required for the proposed architecture will scale in proportion to the
number of tiles. Since the tiles are crossbar-programmed, access is random and the programming
time for a single tile is limited only by the speed of row and column address generation. Since the
bitstream, once created, can be manipulated, it is possible to establish a large word width, in which
each tile can be programmed in parallel. Since there are far more tiles than primary I/O, it is
necessary to establish a compromise, namely that of dedicating a number of configuration streams
to program sequences of LUTs in parallel. Under such an approach, as an example, it would be
possible to program 2 billion lookup tables in less than 5 seconds, without any assumptions on
transmission overhead.

Heuristics / Benchmarks

In order to use a molecular architecture in practice, it is necessary to map Boolean designs
created with high level design tools into molecular descriptions. The tools to do this can be
patterned after those used to perform partitioning, technology mapping, and routing in normal
FPGAs. Our architecture poses special challenges. Whereas normal FPGAs have dedicated
routing and logic resources, the proposed architecture permits any LUT to be defined as either
routing or logic. This complication makes it difficult to harness existing algorithms. We
demonstrated in Phase I that a fairly simple neural network model was capable of solving for
design mappings, and as such we have one tool, though not a very efficient one. For the Phase 2
effort, we will develop a suite of tools that are capable of efficient solutions of designs specified
at a system level, which will furthermore take tolerable defects into account. To improve
efficiency, we propose to develop new and important extensions, based on sub-linear (design
only for portions of the molecules used) and quasi-linear (algorithms that run roughly on the
order of the number of elements) techniques. We furthermore will for the first time establish a
linkage of the molecular FPGA to a commercial computer-aided design (CAD) tool, the
Synplicity Synplify tool, which represents a 45% market share in the FPGA design market. To
effect this linkage, we are partnering with one of the original designers of the Synplify system
(Bill Cox from FPGA Technology).

We will develop a comparative benchmark program, in which a benchmark suite is
developed for a 16,000 element representative device. The suite will be used to compare the
performance of our architecture against a commercial architecture to assess the efficiency of the
architecture. We will establish a strategy for demonstrating a scalable benchmark and will then
leverage the Synplify tools and our custom extensions to answer the most significant mapping
performance question: Is our architecture scalable logically as well as physically?

Perf Estimati
Performance modeling will involve establish a parametric framework for estimating the
maximum frequency of operation for the molecular integrated circuit based on our architecture,
its duty factors, and power consumption. The model follows directly from the architecture itself.
In order to estimate the performance of the proposed molecular architecture, we must establish
the propagation delay through the LUT, the tile size, and the number of tiles between input and
output. With the most difficult computation being associated with molecular structures
themselves, it will be possible to quickly estimate the frequency performance and power
consumption of an entire molecular integrated circuit based on reasonable maximum frequency,
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duty factor, and usage conditions. As it turns out, traditional silicon FPGA devices work from
similar parametric models which are used to guide application development.

Scaleahility Pl _ |
We believe it may be necessary to eventually harness at least the interconnection system of a VLSI
system to perform the distribution of input and output (I/O) signals to enough points to permit
effective utilization of molecular elements.At the densities proposed, it will be possible to aggregate
approximately 2,000,000 tile complexes/cmz, which is based on a 250 x 80 arrangement of the
Figure 5 tile (3:1 depth, using the same width target as the demonstration system). The gate
equivalence is design dependent, but a preliminary estimate suggests about 1000 gates / tile,
yielding a 2 billion gate system. For interconnection growth estimates based on a low Rent's rule
exponent (&.5), it is not unreasonable to expect that 10,000 /O may be required, which translates
to an x-y grid of a pin every 100 microns in each dimension. It is unlikely that an interconnection
system can be deposited over the molecular circuitry. By such reasoning, it is necessary to consider
the supply of /O from beneath the molecular circuitry.

A schematic of the process involved with this inverted molecular-to-real world interconnection
manifold is shown in Figure 13. It is based on the notion of harness both sides of a thinned silicon
wafer (less than one micron) to exploit interconnections on two sides, one for the attachment of
molecular circuits, the other for the attachment of /O terminals. Since the process involves
aggressive thinning strategies, it is heroic, but feasible based on epitaxial liftoff approaches and the
existence of dielectrically isolated silicon and fully depleted CMOS semiconductor processes.
Scalahilit :

During this project, we propose to integrate work on computational system architecture, with
planning how to scale up from fabricating the 16,000 device demonstration chip level to the 10"
device chip level. These topics are intimately related since issues such as testing and
reconfiguring around circuit element defects could otherwise come to dominate the fabrication
time as system size grows. -

Our approach will include devising and categorizing design approaches that ease scalability at
the beginning of the development cycle, evaluating trade-offs and necessary technology
development, and working to incorporate them into the demonstration chip architecture.

We have defined what we believe and intrinsically scalable architecture, and we will seek
additional enhancement to scalability into the system architecture. Before the two-year mark, we
will produce a long-term scalability plan which describes the road map for scaling this
technology to the 10'! device level and beyond.

REFERENCES
[1]7J. Reif., Private communication, June 2000.

[2] A.KDas, M. Pandey, A. Gupta, and P.P. Chaudhuri, "Built-in self-test Structures Around Cellular Automata and
Counters", IEE Proceedings, Part E, 137(4):269-276, 1990.

[3] S. Chattopadhyay, D.R. Chowdhury, S.Bhattacharjee, and P.P. Chaudhuri, "Celtular-Automata-Array-Based
Diagnosis of Board Level Faults", IEEE Transactions on Computers, 47(8): 817-828, August 1998.

115




FINAL PROGRESS REPORT INPUTS ON MOLECULAR ELECTRONICS ARCHITECTURES
James Lyke, November 2000

Background.

The architecture work has advanced on several fronts, always reinforcing a central goal of establishing an
architecture that could really work with molecules. The three basic constraints on architectures remain
the same as they were stated before: (1) low interconnect demand, (2) amenable to self-assembly, and (3)
defect tolerant. Our proposed approach, called Reconfigurable Cellular Array (RCA), is based on a
cellular-automata (CA) inspired approach in which each site in a regular array is reconfigurable. The
RCA provides a conceptually simple approach in dealing with these constraints, as suggested in the
following table: :

Constraint / Property - Reconfigurable Periodic Arrangement
Low Interconnect Demand ' X
Lithography Alternative X

Defect tolerance X

For convenience, the RCA architecture is summarized by way of
the example shown in Figure 1. Figure 1 depicts a two-
dimensional periodic structure (a tile) with nearest-neighbor
linkages, which embodies a description of a simple CA. The
circles represent configurable functions; these sites are usually
referred to as n-input look up tables (nLUTSs). For molecular
architectures, the nLUTs represent nano-blocks, based on
‘molecularly synthesized circuits that perform the required
functions. The linkages of these nano-blocks are themselves
expected to occur as a secondary level of self-assembly, in which
the nanoblocks are brought together in a unified ordering which
embodies the Figure 1 tile.

Figure 1. A portion of molecular
electronics architecture based ona  For reasons beyond the
tile of 3-input look-up tables. scope of the present
discussion, the linkages
are directed. In particular, they form a feed-forward network. It
is important to understand that the both the linkage patterns and
the nLUT definitions can be varied to either embellish the
expressive capacity or simplify the implementation of the RCA.
The need for simplification is important, since even elemental
logic gates based on molecules are exceedingly complicated to
construct. By reducing, for example, a 3LUT to a 2LUT (Figure
2), we can reduce the number of circuit elements by 50%.
Reducing the linkages can also simplify the problems of the
higher level self-assembly. -

: Figure 2. A portion of a simplified
In addition to the constraints based on physical limitations, one  architecture based on 2LUTs.
must address a number of constraints based on practical

considerations, which drive the utility of an architecture. These are the "logical constraints" of
architecture. We believe summarize some of these and how the proposed architecture addresses those
constraints.
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High Interconnect Demand. In direct opposition to the physical limits, architectures become

progressive ly interconnection intensive as the scale (number of devices) grows. RCAs address the
"hunger for interconnect" by allowing any site to be configured to behave as either logic or interconnect.
The manifestation of interconnect intensiveness in design can be explained in some respects as a
degradation of efficiency, since cells that could otherwise be defined as logic must be sacrificed as virtual
wire. Similarly, "real world" reconfigurable logic devices, also known as field programmable gate arrays
(FPGA), also suffer from efficiency problems [dehon95].

Turing machine equivalence. This constraint refers to the logical capacity of expression in an
architecture. It is said in the field of computer science that an algorithm is computable if it can be
described in a way that can be programmed to run on a Turing machine. [dewdney] Turing machines,
being the "reference model" for analytic work on computational complexity theory, can be directly related
to real-world computers, such as a Pentium. With full control of logic, memory, and interconnect
structures, which are used to construct reakworld computers, it is possible to construct "Turing-complete"
architectures. With any one of the three missing, it is simply not possible to form a Turing complete
architecture. The RCA-based architectures require feedback to meet this constraint minimally, and we
have described mechanisms for incorporating feedback in RCA tiles in previous reports on this effort.

The next two constraints are derivative, due to the use of imperfect and reconfigurable "media" for the
implementation of "target" architectures. It is sometimes a confusing point that reconfigurable
architectures are "source" architectures, while they designs that are programmed into them are "target"
architectures. '

Ease of defect identification. Almost all computation structures are non-random, yet lack a simple
descriptive pattern structure. Sometimes the property of descriptive complexity is referred to as
Kolmogorov complexity [kolmogorov]. Qualitatively, it is easier to verify structures with simpler
descriptive complexity (such as RCA tiles) than for elaborate structures in which latent defects can be
easily obscured and difficult to isolate. In RCA:s, defects represent easily-identified departures from
patterns that are simple, observable, and lend themselves readily to exploration through the inherent
reconfigurability of the approach. : o

Ease of supporting reconfiguration. The ability of an architecture to be configured is simple as a
superficial consideration. In each case, a memory array is involved. The two most common approaches
for setting values in a memory array involve crossbars or shift registers. In each case, attention to defects
and overhead in implementation (e.g. address decoding) must be considered. Our work has identified the
possibility of harnessing both concepts and new approaches are identified for reducing implementation
overhead.

Even with an approach meeting these constraints, it is important to be able to define the final product
implied as it might be compared to an ordinary silicon-based integrated circuit (IC). With a very-well
established infrastructure, very clear and focussed concepts have emerged for mounting, operating, and
interfacing silicon ICs. Many of the Moletronics efforts, including our own, have suffered from lack of a
credible bridge to span from nano-scale interconnections to macro-scale electrical terminals. In other
words, no viable packaging concepts have been identified that would allow molecular ekctronics to fit
into an established framework that is expected in ICs that have been developed over the last three
decades. : :
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Simplifications of the Basic Architecture

We have described a simplification of the original 3LUT-based architecture to an architecture shown in
Figure 2, which removes exactly one link from each node to produce a new type of periodic grid based on
2LUT nodes. Since LUT complexity scales as 2" (N being the number of inputs), using the Figure 2 grid
results in node designs that are at least 50% simpler.

But we sought further reductions in complexity, and we have identified a more produce-able 2LUT node
design. Why? Even the 2LUT structure could be too diffficult to tackle as a single :
synthesizable molecular circuit. For this reason, we have identified a much simpler structure, which
appears to be similarly capable of universal Boolean representations, though not in exactly the same way
as a "canonical" 2LUT structure. The basic new structure is a degenerate LUT, involving a single input
and output. The 1LUT (Figure 3), capable of expressing only four Boolean functions (summarized in

Figure 4), appears to be of little use and has never received

any attention in literature. By adding a molecular resistor " "
to the ILUT (Figure 3b), we can form the structure shown

in Figure 3c through a self-assembly process in which the o
"resistor end" is attached at the same point by two different

structures. Under the scheme of an RTL (resistor-
transistor logic) system, we produce a structure equivalent
to the one shown in Figure 3d. Under a periodic

“arrangement of these structures, dictated by the Figure 2
guiding template, a simplified tile, reflected in Figure 5
can be formed by replacing all 2LUTs in the Figure 1 grid
with Figure 2c¢ structures.

(@) ®) : ©) @
Figure 3. An approach to simplifying
2LUTs. (a) 1 LUT as a sub-nano building
block. (b) Addition of a molecular resistor
to complete the sub-nano block. (c)
Depiction of physical self-assembly of 2-
1LUT blocks. (d) Resulting logical

This tile and 1LUT-based compute structure is flexible .
equivalence.

enough to implement general digital functions. A simple
example based on a one-bit half-adder is shown in Figure 6. This diagram illustrates the evolution of
routing and logic computation as signals feed forward within the tile to form the desired functions.

Tiles are the basis of a molecular compute structure, but each node must be configured. The 1ILUT
structures require two bits of binary storage, and the storage can be configured by either a shift register or
a crossbar. Our more recent work has focused on the crossbar, resulting in a memory "field" as shown in
Figure 7. The field is a x-y distribution of individual memory cells, and four cells are required in each of
the Figure 3c structures. A unit cell based on two cross-strapped Figure 3c structures is referred toas a
"bowtie", which requires eight bits from the memory field to be configured.
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One approach to molecularly synthesizing a tile based

in | out on the 1LUTSs on an x-grid is to first form the memory
0|y field, and then assemble a pattern of "bow-tie" nano-
1 modules on top of the memory field layer. The "unit
b cell bowtie" must span eight memory bits from the
memory field, and Figure 8 illustrates two possible
in_| out in | out ways this self-assembly might play out in an actual
ol o ol 1 molecular self-assembly process.
110 10 Defect Discovery, Isolation, and Mitigation
in | out . m | out We can heuristically argue that defects can be readi!y
ol o ol 1 exposed in structures with low descriptive complexity,
since those departures from ideality actually result in
111 1)1 an increase in the information entropy of the resulting

Figure 4. The one -input look-up table (1ILUT)
and its four functions.

structure. One can easily prove this entropy increase
qualitatively by conducting a simple experiment. In
this experiment, one creates two simple, identical
text files with a text editor, each containing exactly
256 "1's", and no spaces, tabs, line feeds, or carriage
. returns. In the second file, one of the "1's" is
randomly replaced with a "0". Next, the files are
compressed with, for example, a ZIP compression
utility. When the resulting file sizes are compared, it Figure 5. A new tile based on 1LUT/resisor
is clear that the second file requires more space. sub-nano blocks.

Defects in a simple structure, therefore, increase its

complexity.

We believe the simple properties of

1 5 g 2 5 ¢ 1 23 4 56 periodic architectures lend themselves to
1 A - - ab - - very simple defect discovery
i approaches. To demonstrate this point,
- aab b - we again resort to a simple experiment.

In defect discovery, & is first very
important to have the knowledge of

- abab- structure. In the cases of random
i architectures, which some groups have
. ababab - - proposed in the Moletronics program, it

i is necessary to undergo another phase,
27b b which we refer to as "structure
- ) discovery". For defects are quantified as
' departures from ideality, and in order to
: know what is ideal, we must know
our starting point. For this experiment,
we choose a 21 x 46 array of 2LUTs,

Figure 6. . How a single-bit half-adder could be mapped onto shown ina spreadsheet simulation in
a 1LUT-based architecture. Figure 9. Next, we introduce a defect,
and its impact is clearly detectable upon

119




inspection of Figure 10. Specifically, in this simulation the 2LUT

at row 5, column 5 is defective. It is important to note that this
spreadsheet demonstrates a level of observability that is not
possible to achieve in real life, and in fact our observations ina
real case are limited to the sites on the bottom row only, since

that is the interface point for the outputs of the tiled structure. So

while the simulation will make the location of the defect seem
obvious, it is in practice not possible to deduce the defects so
readily.

So, while we know where the defect is really, we must confine

our deductions to observations of the patterns on the bottom row

only. Our first step in the "geolocation" process involves
configuring all of the 2LUTs in the entire tile to behave as
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Figure 7. A molecular memory array
based on a crossbar approach.
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L= "straight wires". The determination of this configuration
obviously involves little intelligence or planning in terms of
computation as in fact all sites are configured the same
> way.The result of this test is shown in Figure 10. The bottom
row in Figure 10 reveals a missing "1", and we know that
i this means any one of the 2LUTs in column 5 could have
e been responsible for this defect. So, we could say our
hd pEZ "ambiguity group" is of size 46. A second test involves
using a second "global program" for each site, in this case an
XOR pattern, producing the Figure 11 pattern. Once again,
no special efforts have been made to form a more complex
triangulation. Rather, we have done a fairly mechanical
Figure 8. Attachment approaches for dual thing, in that no unique site programs or input signature

1LUT blocks that would be » patterns have been computed. Yet, as we see in Figure 12,
self-assembled onto the molecular based on but two "un-premeditated" patterns, it is possible to
memory tiles. collapse an ambiguity group from 966 sites to 46 sites to 2

sites. We do not here carry out the final act of configuring the LUTS in a third test, in which it is easily
possible to conceive a nearly infinite mumber of ways to, in a single configuration step, produce a final

test to isolate the fault to one unambiguous location.
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polynomial. As such, a higher-order polynomial more and

Stéps toward programming heuristics in perfect and defect-ridden molecular tile structures

In field-programmable gate arrays (FPGAs), high-level Boolean designs are translated to a large number
(millions) of simple,low-level 0-1 programming decisions. These of course constitute the so-called
bitstream, the "digital DNA" which uniquely configures a prefabricated piece of silicon from a blank
structure to a sophisticated and complex digital system. The same situtation will occur "with high
contrast" in a molecular architecture in which even higher level designs will need to be translated to an
even larger number (billions) of simple 0-1 programming decisions. In the case of our architecture, the
vast majority of 0-1 programming decisions involve configuring 2LUTs to behave as needed to
implement boolean functions. Unlike standard FPGAs, which employ distinct logic resources and routing
resources, our architecture employs homogeneous structures that can serve either purpose. The flexibility
of this system is almost as much anathema as benefit. Ordinarily, for FPGA design, logic is decomposed
into a form represented with binary decision diagrams (BDDs) [brayton90], which allow FPGA logic
structures to be represented as abstract graphs. Similarly, routing resources are represented as graph
structures, but these graph structures are distinct. When, as in the case of our architectures, the graphs are
combined, it is not a simple matter to merge the graphs and algorithms to operate cooperatively.

In this effort, we have made beginning steps towards establishing heuristics for reconfigurable cellular
array structures. In this case, we must allow for the inclusion of many individual point

defects, which represent alterations in the graph. In practice, for other FPGA architectures, the standard
heuristics allow for this type of flexibility, but as a rule, such features are not incorporated in
contemporary FPGAs. :
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Whether for logic, routing, or both, it is important to once
again point out that the heuristics are classified as having a
worst-case computational intensiveness that can approach
exponential time. The situation is referred to as NP-
complete (NPC), meaning that it is not possible to bound
the time required in the worst case by any finite
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more resembles the Taylor expansion of the exponential
function. Fortunately, most real world instances seem to
be solvable in much shorter time. In fact, any heuristic that
has a time complexity function much worse than N*2
would take an intolerable amount of time. When a
computer-aided design (CAD) problem takes longer than
that, it is usually the case that the designer intervenes,
stops the compilation, and re-runs the algorithms after -
making some minor adjustments to the design or the Figure 9. Simulated 2LUT tile.

solution boundary conditions. It is therefore true that in

order to function in the modern world, riddled with thousands of NPC problems, we often find that many
useful problem cases converge very quickly, and we inevitably must concede that we are rarely going to
be able to get the very best answer, which would demand the type of exhaustive search that is clearly
intractable on the scale of human existence.
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ght or shortest path, etc.

minimum wei

molecular architectures, except for an intimidating scale
The greedy algorithms are considered to be dumb,

factor. The template of finding an algorithm for NPC
problems involves two basic principles or steps. The first
principle of a heuristic is to establish a greedy algorithm.

We see no fundamental differences in the situation with
Many greedy algorithms operate at near linear term,
attempting to obtain a quick answer based on some
because they lack the sophistication to "look under
rocks" or explore subtle nuances in the search space that
lead to significant improvements in the answers
theyvfind. But, for whatever their shortcomings, greedy
algorithms are fast and do find a starting point. Itis
possible that a good greedy algorithm can be considered
the end product, and this may be the case for molecular

principle such as

Ten
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Figure 10. Simulated 2LUT tile with defect
and test program. Each 2LUT is programmed
to behave as a straight wire. The bottom row
shows the defect as a single missing "1",
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tic/probabalistic algorithms, and so on. In fact, almost

anything qualifies as a heuristic so long as it is: (a) not itself a "greedy" solution, (b) capable of finding

better answers than a "greedy" solution, and (c)

approach in a nuanced exploration of an exponential or

factorial search space. This is more often itself called the "heuristic" as it is based on a philosophy other

The second principle of heuristic involves some "smart"
than brute force. Heuristics for NPC problems are varied, but include back-tracking, depth-first search,

architectures, since we do not imagine that even an

algorithm will be acceptable.

amic programming, gene

ulated annealing, dyn:

which could have been caused by any

defective LUT in the column.

S

Each 2LUT is programmed identically with the XOR
be analyzed as pure mathematical structures.

example, if we are trying to create a greedy
approach for routing we might use the following

Figure 11. Simulated ti
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PRINCIPLE #1: Separate unrelated signals as much as possible.
PRINCIPLE #2: Bunch /O assignments for large functions more closely;

PRINCIPLE #3: Bunch I/O assignments for functions that depend upon each other more often closer
together.

PRINCIPLE #4: Use the most important routing resources later in the solution process.

PRINCIPLES #1 - #3 are useful in establishing an initial preferred location for input signals. One
important property of the tile structures is that due to the localized nature of the connective network, there
exists a "cone of influence" for signals in a tile. In order to interact with signal, it is necessary to be
within this cone. As such, if signal A never interacts with signal B, then their respective cones of
influence need never overlap (PRINCIPLE #1). Conversely, if a function F is an involved function of
signals A,B,and C then it may make sense to bunch signals A,B,C closely together and have F in a
column that is central to the cluster. Such placements make it more likely that a tile program solution will
be found without back-tracking and altering the initial assignment.

In the case of PRINCIPLE #4, we must interpret what "importan " means. A reasonable interpretation
might be the cardinality of paths in the light cone of a signal. To illustrate the meaning of this property,
we form a simple spreadsheet in Figure 13. Each number is physically located in each a tile position ofa
small 3LUT tile, and the numbers represent the number of paths between the cell itself relative to the
central highlighted cell position. In this case, the LUT positions in the column below the highlighted cell
have the highest value. In fact, if we simply focus on the column and examine the integer sequence
1,1,3,7,19,51,141,393,1 107,3139,8953,25653, 73789, 212941,616227, 1787607, 5196627, 15134931,
44152809, 128996853, etc.), we observe that these numbers correspond to the coefficients of a central
trinomial expansion: (1+x+x"2 )" [hoggatt]. (It turns out that 2LUT path cardinality corresponds to the
coefficients of a central binomial expansion [integer]).

The significance of the these integer sequences is that they are readily computed, making their use in
heuristics more convenient. If the cardinality of paths is a guiding principle then solution paths between
1/O and intermediate solution are readily chosen by direct computation. :
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0 0 1 1 1 0 0 0 0

0 1 2 3 2 1 0 0 0

1 3 6 7 6 3 1 0 0

4 10 16 19 16 10 4 1 0

15 30 45 51 - 45 30 15 5 1

50 90 126 141 126 90 50 21 6

161 266 357 ) 393 357 266 161 77 28

504 784 1016 1107 1016 784 504 266 112

15654 2304 2907 3139 2907 2304 1554 882 414

4740 6765 8350 8953 8350 .6765 4740 2850 1452

14355 19855 24068 25653 24068 19855 14355 9042 4917

43252 58278 69576 73789 69576 58278 43252 28314 16236

129844; 171106. 201643 212941 201643 171106; 129844 87802 52624
388752) 502593: 585690 616227| 585600 502593 388752 270270, 168168 ‘

1161615, 1477035 1704510 1787607 1704510 1477035, 1161615] 827190 531531

3465840; 4343160 4969152 5106627| 4969152 4343160 3465840 2520336 1665456

10329336 12778152; 14508939 | 15134931| 14508939 12778152 10329336 7651632, 5182008

30759120} 37616427; 42422022 44152800 49422022 37616427 ; 30759120} 23162976; 16031952

91538523 1.11E+08. 1.24E+08 158996853 | 1.24E+08 1.11E+08 | 91538523 69954048 49366674

2.72E+08} 3.27E+08; 3.64E+08 377379360| 3.64E+08; 3.27E+08: 2.72E+08| 2.11E+08; 1.51E+08

8.1E+08] 9.63E+08; 1.07E+09 1105350729 1.07E+09, 9.63E+08| 8.1E+08}|6.35E+08 4.63E+08

2.41E+09] 2.84E+09; 3.14E+08 §54{13EE37| 4 14E+00 2.84E+09 2.41E+09| 1.91E+09; 1.41E+09

7.15E+09] 8.38E+09: 9.22E+09 9513228123| 9.22E+09] 8.38E+09 | 7.15E+09| 5.73E+09; 4.29E+09

2.13E+10] 2.48E+10. 2.71E+10 57048336381| 2.71E+10 2.48E+10; 2.13E+10} 1.72E+10 1.3E+10

6.32E+10] 7.31E+10! 7.98E+10 82176836301| 7.98E+10 7.31E+10 6.32E+10|5.15E+10: 3.95E+10

Figure 13. . Cardinality of paths between highlighted cell and other cell sites on the tile.

So, based on these principles, it is possible to make at least a semi-intelligent algorithm for routing in
periodic tiles. We attempt to illustrate aspects of path cardinality-driven placement in Figure 14. The
placement of signals a,b,c, and d reflect close-coupling by the overlap of their respective cones of
influence, while signal g is placed further away, since it is only a function of the output of some
composite of a,b,c,and d, as evident in the solution shown in Figure 14b. Had signal g on the other hand
been randomly placed within the grouping, the resulting implementation would have been less efficient,
as reflected in the solution shown in Figure 14c. We consider Figure 14c less efficient than Figure 14b
because it excludes more LUTSs from being used in future parts of a more involved solution process.
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Figure 14. . Illustration of effect of /O assignment on solution process. Left shows a "principled”
assignment of /O of a complex function. Center shows a solution based on this assignment. Right
shows a solution based on a more random I/O assignment. The effect of the two approaches is that
random assignments result in lower efficiency (more LUTSs consumed in the solution process).
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Abstract

Research in molecular electronics has but one motivation:
to carry Moore’s law scaling in electronics to the year 2050 or
beyond. The result will be staggering, continuing to transform
our lives as has the current evolution of micro-electronics
since their inception in the 1960s. Designers of molecular
computers will also undergo transformations in the way they
design digital processing architectures, due to new constraints
in what may be the most aggressive fabrication technologies
ever conceived. It becomes necessary to increase focus on the
pursuit of basic feasibility of a giga-scale architecture so that
tenant design, test, and implementation issues can be forecast
and researched. Our work has led to the development of an
architectural media for molecular computation. A cellular
automata-inspired template forms the basis of a one billion
gate (giga-scale) testbed, which involves the use of 3-D,
paper-thin, ultra high-density multi-chip modules to assemble
a reconfigurable design that is scalable an additional billion-
fold, consistent with the density projections of three-
dimensional circuits based on molecular electronic devices.
The periodic nature of the architecture not only addresses
significant constraints in molecular-scale systems design, but
can make this demonstration tractable, as the reconfigurability
can be exploited for self-test and defect tolerance.

1. INTRODUCTION

Moore's law asserts that the number of transistors in a
fixed area doubles about every 18 months, a trend now
codified into industry's roadmaps and an indelible expectation
of a technology-affluent society. The future is not without its
problems however. As the feature sizes of the integrated
circuit (IC) approach 0.1 micron, over ten kilometers of
wiring will be required for each square centimeter of circuitry
[1]. This underscores the central influence of interconnections
on architecture. Researchers have highlighted that future
giga-scale (> 10° gate) architectures will suffer from potential
reductions in speed due to an increase in average
interconnection length [2]. Even if the intent of Moore's law
can be achieved through progressive reductions in transistor
size, further progress in high-performance architectures may
be stymied by the inability to wire complex designs.

Despite the monumental real-world architecture-driven
problems of interconnect, some researchers are working
towards a far more aggressive vision of molecular scale
electronics, in which individual active devices are based on a
single molecule [3].  Assuming that such molecular
implementations are restricted to two planar dimensions, the
resulting theoretic densities are potentially one million-fold

over today's CMOS-based microelectronics. Of course,
molecular implementations need not be limited to two
dimensions, and these approaches may be the first to realize
an additional million-fold density advantage by exploiting the
third spatial dimension. Neglecting to do more than mention
the tremendous challenges in molecular synthesis and
assembly themselves, three other challenges are obvious to
what may be the densest possible approaches in future
electronics: (1) interconnection supply, (2) lithographic
alternatives, and (3) defect mitigation.

A prospective architecture, inspired by simple cellular
automata (CA), may offer an elegant solution to these
problems, since CA embody the concepts of periodicity and
localization of interconnect, both of which hold promise for
molecular approaches. By allowing the computation at each
site in space to be arbitrarily defined from a simple but
complete space of Boolean functions, a simple and potentially
effective cellular field programmable gate array (FPGA) is
formed.

As a precursor to future molecular computer
architectures, this paper describes novel digital reconfigurable
components, ultra-dense packaging, and how silicon-based
versions of these components can be aggregated with
packaging. -This is the basis of a cellular FPGA, which is
dense, scalable, easily tested, easily programmed, and defect
tolerant. A near-term proposed demonstration would have a
theoretic performance ceiling of 10" operations/second, while
achieving a packaging density improvement of 100-fold over
today's best alternative packaging approaches (50 em?” silicon
per cm’).

1. AN EMPIRICAL VIEW OF ARCHITECTURE

Architectures, particularly those implemented in
hardware, have properties that are today only empirically
understood. Rent's rule [4], for example, is an attempt to
model the relationship between the internal complexity of an
architecture and the number of terminals required for external
communication: :

T=A4-G%,

where T is the number of terminals, G is the number of
logic gates, 4 is the average number of pins per gate, and
0<p<1 is Rent's exponent. In complex architectures, Rent's
exponent takes the value, 0.5<p <0.8 [5,6]- Rent's exponent
is low for systems with regular structure, such as memories,
and is highest for complex Application Specific Integrated
Circuits (ASICs) [2]. Random circuitry has no Rent's rule
(i.e., p=1), which suggests that something is naturally imposed
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by humans in the act of design that provides for the structure
that Rent's rule attempts to capture. Though the mathematical
concept of separators/bifurcators offers some insight [7],
Rent's rule is still not completely understood. ~What is
possible to say, however, is that Rent's rule does seem to
capture aspects of hierarchy [5], dimensionality [8], and likely
the descriptive complexity of Boolean functions implemented
in architectures [9].

For very large gate counts (>109), referred to as "giga-
scale", Biafore [2] has shown that the average interconnection
length increases when the Rent's exponent p> 0.5, resulting in
increased propagation delay. Since most complex
architectures have high Rent's exponents, present concepts
such as Pentiums with 0(10") gate counts may face severe

performance bottle-necks as they pace Moore's law curve in

the future.

A logical alternative to contemporary architectures in the
transition to ultra-high gate counts involves the exploitation of
simple and highly parallel cellular automata concepts to form
a scale-able computation fabric [10]. Cellular automata (CA)
come in many forms, but the most commonly discussed
implementations are the binary versions popularized by
Wolfram (1-D) [11] and Conway (2-D game of life) [12]. CA
can be thought of as a finite mesh in m-dimensions of discrete
points.  Each point in the lattice performs a simple
computation, based on the values of sites in a usually small,
symmetric, uniform neighborhood. The values of all sites are
usually computed simultaneously at discrete points in time.
CA structures based on spatial dimensions with small
neighborhoods have low Rent's exponent (p< 0.5) and avoid
the interconnection bottlenecking problem associated with

scaling.

III. MOLECULAR FPGA CONCEPT

We use the CA concepts to build novel FPGAs. Most
previous CA based architectures for computation have used
identical functions or rules to compute the values of each site
based on the values of neighboring sites [13]. Here, instead of
using fixed and identical functions at each lattice site, we
permit distinct logic functions at each site, in the form of look-

. up tables (LUTs), which establish a complete Boolean basis

function set. We introduce a planar tiling of look-up tables
(LUTs), formed by unraveling the space-time behavior a
three-neighborhood 1-D CA into a two-dimensional spatial
feedforward network.  shows one of the simplest periodic
implementation of a reconfigurable CA based architecture
involving LUTs. It is clear from the figure that the Boolean
functions at each site, which will contain one or more
molecular device unit(s) (MDU), can be distinct, arbitrarily
selected from a complete Boolean basis set. This, in contrast
to the single-function-per-site CA architectures [11], allows
for considerably improved flexibility, especially since
different sites of MDU can be specialized for different
functions. Furthermore, this particular CA "tile" uses a
directional neighborhood, in particular a feed-forward
network. This restriction is non-essential, but enforcing it
results in more tractable implementations, as the possibility of
forming localized feedback hazards is eliminated.

As in the case of other reconfigurable FPGAs, user
designs in the present architecture are defined through the
mapping of arbitrary logic descriptions in terms of LUT
functions [14,15). The ensemble of LUT "codes" can then be

Inputs

QOutputs

Figure 1. A cellular field programmable gate array (FPGA), based on a feed-forward network derived from the time-space diagram ofal-D
cellular automata (CA). The upper left diagram of a three-neighborhood 1-D CA explicitly illustrates that any site in the CA depends only

on the site and its nearest neighbors.

The CA evolves at discrete time intervals, and the lower left diagram establishes an equivalent

representation in which each row of a second spatial dimension is used to capture the behavior of the CA for a particular time-step. If each
site is replaced by a binary look-up table (LUT), which can be programmed to implement any 3-input function, the cellular FPGA network

shown in the right diagram resuits.

The resulting network is capable of implementing more complex Boolean networks than the original

CA, since each site can model a different function, corresponding to a 1-D CA structure that is inhomogeneous in both space and time.

127




submitted to the AIAA Journal of Spacecraft and Rockets, December 2000

fe el
OataOudnd

Figure 2. Ilustration of how molecular LUTs can be
programmed with a serial configuration chain. The signal
interconnections used in operation of the FPGA propagate
vertically downward in a feed-forward network, while the
configuration system used for programming = propagates
horizontally (meandering) and upwards.

concatenated to form a serial digital bitstream. If the LUTs
are implemented as memory cells in a shift register, it is
possible to program an entire design by shifting its
corresponding bit pattern through the tile of LUTs. This is
shown in Figure 2. '

In order to form a complete CA architecture, it is
necessary to introduce user storage and feedback to allow the
definition of generalized state machines. To do this, linear
register arrays are introduced at one or more tile edges, and
multiple tiles are juxtaposed. An example tile arrangement is
shown in Figure 3. Each tile then propagates a combinational
circuit block realized within the LUTs of particular tiles. The
registers, when synchronized to one or more global clock
signals, define the operation cycle of the overall FPGA. In
order to achieve true feedback, the tiles must permit 360
degree signal propagation loops. A possible arrangement in
our proposed cellular FPGA for achieving true feedback is
shown in Figure 3 through four tiles, each rotated 90 degrees.

I3 -
& 25
= &
= h-]
> @9
E
1-D amray of 1-D array of
nflip-flops nflipflops
E
s £
°2 5
o LUT array ge ’é
(33
% <
3= g

Figure 3. Formation of more complex device by hierachical
assemblage of Figure 1 tiles into a feedforward network. Each of
the four tiles in this architecture are directed at 90 degree rotation
to form an overall feedback network. Linear flip-flop arrays
form registration structures, which are necessary for the
construction of finite state machines. Clock distribution is
required only for these linear arrays, as depicted by the central
structure.
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It is both interesting and useful to compare cellular
FPGAs to traditional FPGAs developed by industry. They are
similar in that both types of FPGAs use LUTs and are
configured with a serial bitstream. However, cellular FPGAs
differ from traditional FPGAs in two important aspects. First,
cellular FPGAs do not support programmable routing. In
commercial FPGAs, as much as 90% of the silicon real estate
(space on the substrate of an IC) is represented by
interconnect [15]. Cellular FPGAs, which only support
nearest-neighbor connections, must define interconnections
through the use of LUTs. Of course, this also requires that
LUTs must often be sacrificed as virtual wires (the case where
a LUT"s behavior is defined to simply repeat one of its inputs)
for the purposes of signal transportation. The second
important difference is that cellular FPGAs are by definition
periodic, whereas commercial FPGA devices have complex,
irregular structures. )

A third, and perhaps one of the most important
characteristics of cellular FPGAs is its defect tolerance. In
order to illustrate this a bad LUT and its impact zone (“cone
of influence”) are shown in Figure 4(a) The effect of the bad
LUT can be easily recovered by simply adjusting the
definition of neighboring LUTs to circumlocute or “steer”
around the defect (Figure 4(b)). This very important property
of cellular FPGAs builds upon the periodic nature of the
design to produce, in principle, very robust complex
architectures, capable of dealing with many distinct.
fabrication or assembly defects.

~

w

w

Outputs Outputs

@ ®)

Figure 4. Demonstration of defect tolerance in cellular FPGA.
These diagrams represent implementations of Boolean networks in
a cellular FPGA tile. Solid circles (LUTs) with connections
implement non-trivial functions, circles with a vertical line
implement virtual wires, and unconnected circles are electrically
inert. The left diagram illustrates the impact of single defect (D,
row 2), which has a “cone of influence” represented by the dotted
lines. In this case, two of four output functions have been corrupted
by the defect. By redefining LUT configurations within the same
tile, the right network circumlocutes the defect, resulting in a
successful implementation of the desired network, even with an
imperfect tile. Such reconfiguration schemes will be essential in
any molecular electronics approach.

IV. GIGASCALE DEMONSTRATIONS IN SILICON

Although the present cellular FPGA concept is intended
for molecular scale implementation, it can be equally easily
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adapted in many other technologies, including traditional very
large scale integrated (VLSI) circuits. The ability to assemble
near-term  prototypes in silicon provides an excellent
opportunity to study giga-scale architectures firsthand. In
0.25 micron CMOS, for example, it is possible to assemble
200,000 3-input LUTs (3-LUTs)/cm2. As such, assuming an
effective gate equivalence of five, two-input gates per 3-LUT,
the cellular FPGAs offer a gate density of 10° gates/cmz.

While the density of a cellular FPGA is impressive and
competitive with traditional FPGAs, in order to implement 2
giga-scale demonstration, it will still be necessary to
accurnulate over 1,000 cm? of silicon in a small region. For
this reason, it will be necessary to consider not only multi-
chip modules (MCMs), which might offer an increased planar
density, but three-dimensional “techriques are required to
achieve a giga-scale architecture in’ a manageable physical
size. For this purpose, we introduce the notion of an ultra-
high density interconnect (UHDY), capable of implementing a
dense 3-D arrangement of cellular FPGA components.

The basic high density interconnect (HDI) process is
widely reported as a refined implementation of a patterned
overlay interconnection process for building dense MCMs
[16]. By employing a temporary substrate and using back-
grinding techniques, a paper-thin MCM technology, which we
call UHDI can be defined. The process of generating UHDI is
iltustrated in Figure 5. The finished UHDI assembly (Figure
5(c)) is similar to HDI, except that the entire module,

. including substrate and IC components, are uniformly thinned.
It is very important in the 3-D extension of the UHDI process
that (1) a minimal number of patterned overlay wiring layers
be used and (2) the module be thinned in its entirety to less
than 100 microns. The plies may be individually tested and

(a) substrate with recessed
components (face up)

(b) formation of single layer
pattemned overlay

(c) thinning of entire module
through back-grinding

Figure 5. Simplified sequence of ultra-high density interconnect
(UHDY) fabrication process. a. A substrate hosts integrated circuits
(ICs) face up in recesses 10 produce a planar surface. b. A kapton
dielectric (25 W) is then laminated onto the substrate. Vias are
formed through the kapton, and a Ti-Cu-Ti (1000 Angstroms 4
/1000 Angstroms) metal system is deposited, patterned, and etched,
creating a first-level interconnection manifold. c. The substrate and
embedded ICs are uniformly thinned to produce a 70-1001 paper-
thin multi-chip module (MCM) ply, shown in Figure 6, which can
be electrically tested. '

even used as a decal-like MCM for a variety of applications.
Simple MCMs have been built using this technique (Figure 6),
resulting in 2 100 micron structure. The final thickness of the
embedded silicon ICs is less than 50 microns, which is thin
enough to be bent around contours without breaking.
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It is also possible to stack the plies into a 3-D assembly,
as shown in Figure 7. In this approach, individual layers can
be incrementally stacked together, using a single additional
patterned overlay. This will allow contacts between nearest
neighbor layers to be formed, which is consistent with the
connectivity requirements of CA assemblies. The approach is
in principle extensible to an arbitrary number of stacked,
paper-thin layers.

Cellular FPGA and 3-D UHDI can be combined to
demonstrate  giga-scale  architectures with  present
technologies. A basic MCM building block having a single
patterned overlay could be based on a 5 x 5 matrix of ICs,

Figure 6. Paper-thin ( ) 100 con) multi-chip module.
Embedded integrated circuits are 50 microns thick and no longer
break when bent. :

with each IC implementing a one million (1M) gate equivalent
cellular FPGA.

However, ICs within an MCM will employ only nearest-
neighbor connections for user terminals (inputs and outputs)
and the configuration bitstream. Power, ground, and clocking
signals would be global, though local fusible links could
isolation defective IC components, curbing system-wide
catastrophic effects.

The architecture presented here is based on a large
number of necessarily identical IC components. The 1M-gate
IC will comprise about 100 tiles, each containing ~10K
equivalent gates in a planar tile of 3LUTs. Tiles within an IC
can be interfaced through linear register arrays as previously
described. :

Since each MCM will have ~25M-gate density, a billion-
gate (1B) system would require a 40-layer UHDI stack, using
an additional patterned overlay on each stacked layer in the
manner described. A number of perimeter contacts from each
IC can be routed vertically, some upward and some
downward, to form an arrangement in which all cellular
FPGA ICs would have nearest neighbors in each of three
spatial dimensions.

Assuming 100% utilization and a 10 nS cycle time, a
could theoretically achieve 10"
operations/second. While these numbers are impressive, some
of the initial goals of this gigascale testbed are for functional
investigations of a more modest sort. One of the principle
research areas are the heuristic algorithms that can exploit
these scale-able architectures as media for modern complex
digital design. It is hoped that the flexibility of the
architecture will simplify a problem that is traditionally quite
difficult: functional test and verification. Simply put, it is
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possible to harness such a system to perform its own testing,
by defining under software algorithms a test vector set capable
of finding all good and bad LUTs and interconnections within
the assembly. This could be accomplished by defining a
series of "virtual wires" that sweep or traverse the entire

(a) two thinned UHDI decal
layers stacked

(b) formation of additional
pattemned overlay to connect
together the two layers

 (c) addition and integration
of third layer, etc.

Figure 7. Extension of UHDI into a three-dimensional (3-D)

process. a. A 3-D build begins with the lamination of two (tested)

plies. b. A second kapton layer is applied, and deep vias are

laser-drilled through the entire top ply, permitting electrical

access to the bottom ply. A second Ti-Cu-Ti metallization is

formed. ¢. The ply lamination and deep via interconnection

process is repeated as required to form complex 3-D
arrangements with potentially dozens of densely interconnected

paper-thin MCMs.

assembly and are emulated as trivial computation operations.
Failing to "see" a signal on the other end of a virtual wire is
easily determined to be a defect, and defect isolation routines
might be algorithmically generated “on the fly” to isolate
defects as they are detected. Hence, in this giga-scale
machine, not only can powerful computational blocks can be
defined, but the machine will be capable of implementing a
self-testing strategy in an intuitive manner.

CONCLUSION

Cellular automata offer a conceptually simple but
powerful model of computation, and their basis as a
reconfigurable field-programmable gate array device resolves
many open problems in constructing molecular architectures.
In the proposed CA based FPGAS, a periodic spatial structure
establishes a computation manifold, robust to defects inherent
in manufacture and assembly. Realization of full devices
through chemical self-assembly will allow economical
production of these architectures as perhaps the first practical
molecular ICs. A near-term glimpse of the future is under
development to pave the way for these powerful devices
through silicon implementations of scaled down versions of
the architecture. The combination of advanced packaging and
state-of-the-art ICs are described to introduce a giga-scale
demonstrator in a near-term application that may be non-
trivial but achievable. Giga-scale architectures will become
inevitable with further advancements toward the limits of
CMOS technology and eventually molecular electronics. The
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proposed design provides a first-step toward achieving a
universal giga-scale architecture bed for molecular computers.

ACKNOWLEDGMENTS

The authors acknowledge the inspiration and support of
the DARPA/DSO Moletronics program.

REFERENCES

[1] The National Technology Roadmap for Semiconductors, i997,
Semiconductor Industry Association (SIA), San Jose, CA.

[2] Biafore, M. Cellular automata for nanometer-scale computation,
Physica D 999, 201 (1993).

[3] Heath, J.R., P.J. Kuekes, G.S. Snider, R.S. Williams, “A Defect-
Tolerant Computer Architecture: Opportunities for
Nanotechnology, Science 180, 1716-1721, (1998).

[4] Bakoglu, H.B. Circuits, Interconnections, and Packaging for
VLSI, (Addison-Wesley, New York, 1990).

[5] Donath, W.E. Placement and Average Interconnection Lengths of
Computer Logic, IEEE Trans. Circuits and Systems, CAS-26(4):
272-277, (1979).

(6] Schmidt, D.C. Circuit Pack Parameter Estimation Using Rent's
Rule, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, CAD-1(4):186-192, (1982).

[7] Bhatt, S. and F.T. Leighton, A Framework for Solving VLSI
Graph Layout Problems, Journal of Computer and System
Sciences, 28, 300-343 (1984).

[8] George, G. and J.P. Krusius, Performance, Wiereability, and
Cooling Tradeoffs for Planar and 3-D Packaging Architectures,
IEEE Transactions on Components, Packaging, and
Manufacturing Technology -- Part B, 18(2): 339-345, May 1995.

[9] Wegener, L. The Complexity of Boolean Functions, (John Wiley
& Sons, New York, 1987).

[10] Kugelmass, S., Squier, R. and K. Steiglitz. Performance of
VLSI Engines for Lattice Computations. Complex Systems 1
(1987) 939-965.

[11] Wolfram, S. Cellular Automata and Complexity, (Addison-
Wesley, New York, 1994).

[12] Gardner, M."Mathematical Games: On Cellular Automata, Self-
Reproduction, The Garden of Eden and the Game of Life",
Scientific American, 224(2): 112-117, February 1971.

[13] Toffoli, T. and N.Margolus. Invertible Cellular Automata: a
Review. Physica D 45(1990) 229-253.

[14]Trimberger, S. A Reprogrammable Gate Array and
Applications, Proceedings of the IEEE, 1030-1041, 1993.

[15] DeHon, A. Reconfiguable Architectures for General-Purpose
Computing, AI Tecknical Report 1586, MIT Atrtificial
Intelligence Laboratory, 545 Technology Sq., Cambridge, MA,
October 1996.

[16]Lyke, J. Two- and Three-dimensional High Performance,
Patterned Overlay Multi-chip Module Technology, Proceedings
of NASA Technology 2002 Conference, Technology 2002
Symposium, Baltimore, MD, December 1992.




DISTRIBUTION LIST

DTIC/OCP*
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1cy

AFSAA/SAMI

1570 Air Force Pentagon

Washington, DC 20330-1570 lcy
AFRL/VSIL

Kirtland AFB, NM 87117-5776 : 2cys

AFRL/VSIH
Kirtland AFB, NM 87117-5776 lcy

AFRL/VSSE
Kirtland AFB, NM 87117-5776 3cys

Official Record Copy
AFRL/VSSE lcy

131




132



